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ABSTRACT 

T- ^ 
This {paper describes the method of designing distributed networks consist- 

ing cheifly of distributed coupled lines. 

Coaxial filters are the representative ones of distributed filters.   They 
are of practical use because of their simplicity of construction and design procedures. 

On^ the other hand, it is sometimes difficult to obtain those of desired characters, 
owing to many restrictions.   Coupled line filters came into use to supplement these 
drawbacks and displayed their merits as narrow band filters.   As they grew familiar, 

varieties of networks were foundr and have now significant uses in microwave bands 
as strip-line filters. 

ill 
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Introductory 

I.   1   On ingredients 

This paper describes the method of designing distributed networks constating 

chiefly of distributed coupled lines. 

Coaxial filters are the representative ones of distributed filters.   They are 

of practical use because of their simplicity of construction and design procedures. 

On the other hand    it is sometimes difficult to obtain those of desired characters, 

owing to many restrictions.   Coupled line filters came into use to supplement these 

drawbacks and displayed their merits as narrow band filters«    As they grew 

familiar, varieties of networks were found, and have now significant uses in 

microwave bands as strip-line filters. 

In early stages of theoretical treatments of distributed networks, the 

elementary method was to replace lumped elements by corresponding distributed 

elements.    The treatment has shown a great progress,  since P.I. Richards 

introduced a parameter p= j tan (2irfi/c) which corresponds to p=j2irf in lumped 

networks.    This was done by making all line elements of equal length.    In this paper 

also,  the technique has been used to systematize,  even though partly,  the theoretical 

treatments of coupled-line filters. 

This paper may be roughly divided into three parts.   Chapters 2 and 3 treat 

with those networks consisting mainly of distributed coupled lines combined with 

one or two coaxial elements.    The characters of the networks are studied with 

reference to equivalent networks,  and it is aimed to have a whole view of the 

characteristics of coupled-line networks.   Chapters 4 and 5 describe methods of 

obtaining coupled-line  networks through transfromation.  using equivalence 

relations in preceding two chapters, from the networks designed for lumped constants* 

Chapters 6,  7, 8 and 9 treat the extension of coax extraction, proposed by Richards, 

into extraction of coupled two-wire lines,  and explain that this procedure will be a 

method of synthesis in coupled-line networks.    Finally some experiments are shown 

in addition, to see the validity of theoretical calculations. 

Studies on coupled-line networks were carried out by Hirota , Moriwaki  , 
3 4 Uchida  ,  Nagai and Sato  .    This paper has its b\sis on the earlier studies due to 

these authors, and has been developed by the writer. 

Following sections describe certain items that will be of reference in 
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reading this paper. 

I. 2   Frequency transformation into distributed networks 

In distributed networks, the frequency f conies into expression in a form 

tan (2T fi/c) or tanh (a+j2.v fi/c), because lines are used as elements.   Sometimes 

cosines or sines may appear, but they may be transformed into tangents.   Therefore. 

the characteristics of distributed networks are periodic functions in f and will 

repeat with frequency.   If tht lenghts (i) of the line element are scattered, the 

periods of repetition vary from element to element, and the characteristics of 

the whole network will have a complicated periodicity.   As a result, it will be 

very difficult to compute the characteristics or to have representations in 

equivalent networks.    From this view, Richards    and Matsumoto   proposed that 

(a)   lengths of elements should be all equal 

(fa)   a frequency parameter 
2wf   . 

p »j tan -J—' 

or 

p= tanh (o+jß)i = tanh(a+j ?li i 

should be u&ed. 

As a consequence of condition (a), the periodicity becomes so simple that 

the period is 2«  in Zv fi/c.   On the other hand, condition (b) enables the corres- 

pondence of 2irf and tan(2ir fi/c). and one can easily consider a network of lumped 

constants to be that of distributed ones by   merely replacing p   =j 2<r £ by p. 

This proposal has made the theoretical treatment» of distributed networks 

very easy, and caused an abrupt progress of distributed network theory. 

The same is in the treatment of coupled line filters and the frequency 

transformation is used throughout this paper.   In making actual networks, one 

need not always use elements of equal lengths.   The characteristics for unequal 

lengths of elerr.„iits can,    to a certain extent, be interpreted from those for equal 

lengths. 

I.  3   Coaxial filters 

Since the proposal of the frequency transformation concerning theoretical 

treatment of coaxial networks, developments were made, chiefly by those of our 
7-11 country .    The outline will be presented here for reference. 
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The theoretical developments have been made under the conditions 

(1) all elements are of equal length, and the frequency transformation is 

used» as described abore. 

(2) In order to avoid multiple coaxial structures, series elements will not 

be used, shunt and cascase connections will be used instead.   Thus 

the three kinds of elements are of most significance: 

(a) inductance   Wp 

(b) capacitance   W/ p 

(c) unit coax 

Examples of actual networks are: 

(i)   bar network 

(ii)   simple open (or short) branch network 

(iii)   tree-and-branch network 

(iv)  loop network (tree-and-branch network in a broader sense) 

One can naturally assume parallel or cascade connections of any networks above 

mentioned! 

I. 4   Richards' key theorem 

Richards' key theorem and coax extraction will be mentioned here, since 

they have some concern with the extraction of coupled two-wire lines. 

Richards' theorem says 

" If Y is a pt ntive real function, then 

pY^-pjY^) 
YrY(pi,pvip1)-p1Y{p)       1 

is also a positive real function. 

Let p. = 1. in particular, then one has 

"If Y is a positive real function, then 

pY(l)-Y(p) 
Y   = Y(l)  

1 pY(p).Y(l) 

is also a positive real function.    Here Y. is the remainder after extraction of a unit 

coax of characteristic admittance Y(l) form Y. and it is proved in this theorem that 

this Y. is a positive real function (to be two-terminal admittance). 
1 ec* 
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I« 5   Construction of lines 

A coaxial filter   .. made of a combination of coaxial lines. but theoretically 

it may be made of open two-wire lines.   In short, it is a combination of single- 

phase lines«   But open lines are apt to interfere with other system« of lines 

through radiation, etc.. and consequently coaxial elements are used in filters. 

A coupled two-wire line may be shielded or open, and also may be of any 

shape.   Theoretically this does not matter, but shielded lines should be used in 

practice.   In this paper, a coupled two-wire line is represented by two wires 

over the ground. 
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CHAPTER I.   Equations of transmission in lines of parallel wire« 

This chapter described equations of transmission of distributes coupled 

lines consisting the major part of coupled-line filters.   Various manners of 

representation have been made by various authors«  *     '    >      • Here equations 

are presented» with coupling coefficients and symmetry coefficients» that would 

be of use in describing the characters of coupled-line filters« 

1.1« Equations of transmission in multi-wire lines« 

Take any point x on a line of parellel wires stretched over the ground« 

let the effective values of voltages and currents be[Vjand[ 11 respectively, and 

assume the direction of x as shown in the figure, then the following equations will 

hold between the voltages and currents: 

-^-[0-    [Yl[vl (l.l.b) 

where [z] and [Y] are impedances and admittances of the line per unit length. 

If the line is lossless, one may use the inductance [L] and the capacitance 

[c]per unit length in Eq. (1),  so that 

--^-  [v] = j«[Ll(l] (l.Z.a) 

-gL  CO = j" [C][V] (1.2«b) 

Differentiate   Eq. (1. 2. a) in x and put it into Eq. (1. 2. b),  then one has 

-A    [V)=«2[L][C][V] (1.3) 

There is a relation 

[LHC]--^!] (1.4) 
o 

among the velocity V ,  of propagation of the electromagnetic wave,  [L] ,  and [C], 

so that Eq« (1. 3) can also be written 

--^  tv]--4-tV] (1.5) 
dx v 

o 
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Here define ß by 

«/vo=p (1.6) 

which is called the phase constant of the line. 

The solution of Eq. (1.5) is in general given by 

V  =[acJpX + be-JßXj (1.7) 

where a and b are constants of integration to be determined from boundary conditions. 

Combining the above equation and Eq. (1.2.b),  one obtains 

"   -^ M= - Jß[aeJPx- bc-JPx] =jw[c][l] (1.8) 

which yields currents,  with notice to the direction of x« 

'[i^J-^^Jßx.^-Jßx] (1.9) 
o 

Eqs.(1.7) and (1.9) are the fundamental equations for the voltages and currents. 

To determine the constants a and b of integration,  let the voltages and currents 

at x88© be [V land |I 1 respectively, then from Eqs.(1.7) and (1.9),  one has the 

relations 

[a + b]=[vj.[a-b]=  vo[L][lJ (l.lO.a) 

which lead to 

M= N^oWol'M-N-^MW        ^^ 
and finally to 

M^vJ + voMM'jPx+i[N-v«WK] f jPx 

= [vlcos ßx+jvonJlpo-J8inpx (l.Jl.a) 

[l] = [ij cos PX +j^- [L]"1 [vjsin PX (l.U. b) 
o 

1.2.    Line constants of multi-wire lines 

In the equations (l.U) of transmission, primary constants v    [LJ of the line 

appear in place of the characteristic impedance W of a coaxial line.   Rewrite vo [LJ 
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by £q. (1.4),  then one has 

V0[L]= ACY'ILY
1
. [L]=   [C]-1 [Lh [W] (1.12) 

Here new line constants / W   should be defined which will be called the characteristic 

impedance of a multi-wire line.   Making use of this quantity. Eq. (1.11) will read 

[V] s [Vo]c08 PX +[W][IJ j sinßx (1.13.a) 

[ll« [loJ cos ßX + JW]"1 [Vop sin Px (1.13.b) 

This form of equations of transmission will be used hereafter.   Entries of [w]can 

be written 

[W]= 

Wll    W12" 

W21    W22'" 

nl        nZ 

^1. 

W. 
2n 

W 

(1.14) 

The law of reciprocity should hold in the establishment of Eq. (1.1),  so that [Lj 

and [c]should be symmetrical matrices,  and consequently [w]  should also be a 

symmetrical matrix.    That is, 

and 

W.. = W.. 
U J» 

[w]= 

Wll  ^z* 

W12   W22 

w,    w. In      2n 

W 
In 

W 2n 

W 
rm 

(1.15) 

Rewrite this, for the sake of convenience in practical use, in the form 

i w12/w11...w1./w. 

[w]=w 
11 

'ln/"ll 
W12/ Wll    W22/ WU ''' W2n/ Wli 

Wln/Wll    W2n/Wll ' "  Wnn/Wll 

- W 11 

12 In 
k'2   d2  -"^n 

n     2n n 

(1.16) 
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Here are introduced d. and k..   which will be called symmetry coefficients and 

coupling coefficients respectively.   W.. is the self characteristic impedance of 

the first wire. 

In the following sections are obtained equations of transmission using 

these line constants for 2-wire lines and 3-wire lines. 

1. 3.   A parallel 2-wire line. 

(A general 2-wire line)  Define voltages and currents of a parallel 2-wire line as 

shown in Fig. 2.   Here one has 

[v]s 

L^ 

CVo]= 

Pol' 

1       k12 

k12   d2 

10 

20 

no 

L^O 

(1.17) 

which will yield,   upon substituting into Eq. (1.13). 

V1=V10 C08 PX + W11(I10 + k12 ^O1 j "in pi 

V2=V20 C08 PX + Wli^lO + ^W J 9in V 
lfllQcoa Px + 

l2sho COB P   + 

1 

Wll<d2-k12> 

1 

(d2V10-kl2V20)J8inPI 

t-k12V10+V20>J»inP4 

w11(d2-k12 ) 

These are the fundamental equations of transmission in 2-wire lines. 

(Case of Symmetry) If the line is symmetrical with respect to the ground 

so that 

V W22/Wll5: 1 

and therefore the fundamental equations can be written 

(1.13) 

wirw22. 

(1.19) 



PIBMRI-1048-62 9 

VfV10 C08 P1 + Wll^lO + k12 ^O1 J *in V 

VV20 co- P1 + Wll<k12 ^O + W J 8in P1 

Ij = I10 co« ßi + 1 —  (V10-k12V20) j sin ßl        (1.20) 
Wnd-k^ ) 

h = ^oco" P' + — r(" k12V10 + ^0» j 'in v 
w11(i.k12

z) 

(NOTE)   W...  d, and k., have following relations with the balance and unbalance 

characteristic impedances (W   and W  ) and the degree of symmetry   6: 

1-k12 6=   i£_ 
d2-k12 

Wb 
r i wii^d2"ki? ' = w11{(i-k12) + (d-k12)}. w^ 12 

(l-k12 + (d-k12) (1.21) 

These quantities are encountered with in the line equations,  as line constants, 

obtained by the method of symmetrical coordinates. 

In other works,   upon substituting these relations into Eq. (1.18).  one 

will obtain a result perfectly coincident with that obtained from the method of 

symmetrical, coordinates. 

Rewriting the above relations, one has 

W11!S Wu + Wb 62/(1 + 6)2 

Wllk12= Wu" Wb6/  <1+6)2'  Wlld2= Wu + Wl/(1+6)2    (1•22, 

so that 

Wjjd-kj^ Wb 6/(1+6).  Vfnte2-kl2)*yfY/{l+b) (1.23) 

Since W. ,  6 and W.. > 0,  W   >   W, 6/(1 + 6)2,  one has the restrictions 
b II— Umi        b 

I. d2  >   k> 0 (U24) 

1.4.   A parallel 3-wire line 

(A general 3-wire line)   In a parallel 3-wire line,  one has similarly, 
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vl 
m "vio 

V2 V20 

V3 V30 

co« pi + WJJ k12 k13' V 
12    d2 k13 ^0 

13    k23 d3 ^0 

j sin ßi 

' h m ho 

h ho 
[h\ ho. 

pi+JLr 
|w| 

|w| w n 1  k12 k13 , 

k12 d2  k23 

hi -ik^iik^r 
-i^n^i-ik^i 

ik13l-lk23l|d3l 

W=rd2     k23 
k23  d3 . 

h0 
V

20 

V3€ 

J «In pi 
(1.25) 

^3  k23    d3    . 

where |k| means a minor determinant. 

(Case of «ymmetry)   If the line is symmetrical with respect to the ground, one has 

Wll=W22s:W33 (1.'26) 

so that 

d2=d,= 1 

Furthermore« if the wires are symmetrical to one another, one has 

W12= W13= W23 

(1.27) 

k12 = k13 " k23    ( 5 k
0) (1.28) 

so that 

[W] w 11 1    ko ko' 

kol ko 
k   k o   o 1 

,       1+k 

W11(142ko)(l-k:)) 1 +k 

-k 

1+k 

-ko 

1 + ko 

-ko 
1 +k 

1+k       1+k o o 

(1.29) 
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The«e relations will be used in Eq. (1.25). 

(Case of aymmetry with respect to wire 2)   If wire 1 and wire 3 are aymmetrical 

with respect to the ground as well as to wire 2.  one has 

d3-l 

k12 = k23 

(1.30) 

so that 

m- 

wll 1   kj. k13 

k12   d2 k12 

k13    k12 1 

1 
'd2 - k122 

-k^d-k^) 

•kl2(J-k13)  k^-d^ 

1-k132 *12<1-k13) 

W11A 

k12   " d2k12 1*12' l-k13)  d2 - k12
2 

A« (l-k13){d2(J+k13)-2k13
2} 

Take in particular a value of d,: 

then one has 

d2= (l+k13)/ 2 

(1.31) 

(1.32) 

Lw]= wn 

[w] -1_      1 

1 k12 k13 

k12 (1+k13)/2 k12 

^13 k12 1    . 
r 

wli^ 

l+k 13 
1 +k 

- k k,3tl-k|«/    k.7  ~*i 
13 

12       "W R13'    "12    "13 

-k12(l-k13) l.k13'    -k12(l-k13) 

klZ2-k13^  ^-^ ^   -   ^ 

(1.33) 

A' = (l-k13)' 
(l+k13)' 

-   2k 12 
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These relations will be useful in reducing the calculation to that of 2-wire lines, 

as described later. 

For a larger number of wires,  one can similarly make calculations by the use 

of the equations (1.13) of transmission,  but the examples will be omitted because 

of no direct necessity. 

CHAPTER 2.   Simrle networks made of coupled two-wire lines. 

Here will be mentioned those networks consisting of a set of a coupled two- 

wire line and simple impedances, as simplest examples of coupled-line filters« 

along with their equivalent networks and the relations with coaxial filters. 

2.1.   Simple networks made of coupled two-wire lines and their four terminal constants« 

A 2-wire line over a ground has, so to say 4 pairs of terminals, if one takes any 

terminal and the ground to max« up a pair of terminals.   Taking any two pairs of 

terminals as input and output terminals and treating the remaining pairs of terminals 

in a certain way,  one has a four-terminal network.    Networks of various properties 

will come out depending on the treatment of the terminals,  but here only the cases 

will be considered where the terminals are open circuited, connected to the ground 

directly or through simple impedances.   They are shown in Tables 2.1 " 2.5. 

L's and C's in the tables show impedances jWtanßi and -jWcotßi respectively.   No 

citations are made to those networks having complicated impedances or parallel 

impedances at the input or output terminals. 

The four-terminal constants of these networks may be obtained by substituting 

end conditions into the fundamental equations of transmission of the two-wire line, 

described in section 1.3.   For the sake of simplicity, the line is assumed to be 

symmetrical,  and Eq. (1.20) has the following form 

Vj = V10 cos ßi  + Wo(I10 +kl20) j sin ßi 

V2.V20cosßl + Wo(kI1()+I20)jsinßi 

Ij « I10   cos ßi +    (V10 - kV20) j sin ßi 

wo(i-k2) 

h ' ho co" P1 + ^-T"(-kV 10 + Y2Q) j 'in pi 

Wo(l-k2) 

(2.1) 
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The notations A'P, A'A, L*P, H*P, B'E and B'P in the tables signify the types 

of the networks of all-paaa, all-attenuating, low-pass, high-pass, band-stop and 

band-pass. 

Those networks marked with X  and X X have already been reported 

by other authors, but they are cited because they are necessary to obtain equivalent 

networks in the following section« 

Wj. and W    in tables 2.4 and 2.5 are given by Eq. (1.21),  and since the line is 

assumed to be symmetrical,  they are in the relation 

WB = 2Wo (1 - k),   Wy = i Wo(l + k) (2.2) 

2.2. Equivalent circuits 

Equivalent circuits are shown in Tables 2.6"* 2.10,  which are obtained from the 

four-terminal constants described in the preceding section.   In the tables,  the left 

columns show coupled-line networks,  the middle columns the equivalent circuits 

given in lumped constants,  and the right columns the equivalent networks made of 

coaxial lines (not always of convenient forms for realization). 

The frequency parameter p1 in the equivalent lumped networks stands for 

p' = j tan (pi/2) 

and is related to p by 
-    2p' p= —E  

IV2 

This parameter comes in when cascade coaxial lines (unit coax) are represented 

by lumped constants,  and may seem to be unfavorable; but it will not appear 

in the overall network characters. 

One may have a rough aspect of the properties of the networks through their 

equivalent circuits.    Their characteristics will be studied in the following sections. 

Since those networks marked with asterisks have already been reported in detail, 

only others will be studied, 

2.3. Low-pass type networks 

The networks (b) and (f) in Table 2.6 are of the same property, and are low-pass 

filters.   The equivalent network is like Fig. 2.2.  through which t'xe characteristics 

will be studied.   This ia one of the simplest networks among coaxial filters, and is 

reported in many articles, so that only the network constants will be referred to 

here. 
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bn&ge impedances (ZQJ,  Zjg) and the transfer constant 6  are given by 

Zoi-Wi 

tanh 0 
o ,yr^7 n 

Ji -n 2 

where 

2_  ,„ / ,„ „2_    2/.. 2 
i " V^i-  -n SP/WI 

In the networks (b) and (f) used in table 2.6, those values should be used that are 

shown in the following table«   These networks have 

u 2 

ZolZo2=  Wl2—L7-,sR2 

1 + Wl 

and are "constant-k" type filters,    fa), is the cutoff,  and there are no attenuation 

poles.   The characteristics are shown in Fig. 2.3,  with respect to (2. 

It can be easily seen from the equivalent circuits that the networks (d) in table 

2.6 and (a) in table 2.9 have also the same character.   These are of two-element 

structures.    On the other hand,  the networks (b) and (f) in Table 2.6 are of 3-element 

structures and therefore the formers are degenerate filters each with one super- 

fluous element.   As for low-pass filters, therefore,  the latter two networks arc 

more   significant than the formers. 

2.4. Band-stop type networks 

In contrast to the networks that are insignificant because of degeneracy 

described in the foregoing section,  those networks of (c) and (e) in Table 2.6 

act as 3~element networks,  and have band-stop characteristics.   They are 

significant since they can have narrow band characteristics, by making the 

coupling coefficient smaller.    Let the image parameters be given by 
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z_ « 
wo 

W-l 

s 
O 

2 
+ «2 

o 
d 

/(p2+fc ..f) {p2+«f) 

*<*' 
/p2 + 

2 
w.l 

'f 

tanh 0 
/p2-f 
/P2 -.f 

then their relations to line constants are shown in the following table« 

In the two filters above» if one makes k smaller, one will have «  , - «   - «,, 
-1 ■     o=   r 

and can make the stop band narrower.   It is easy in practice to make the coupling 
coefficient smaller, because it is only needed to increase the separation of the wires, 
and a narrow band-stop filter will result easily.   Details of experiments will be 
described in Chapter 10. section 1. 

The network (b) in Table 2.9 is also of band-stop type.   Its equations of 
characteristics are: 

1 + k   «2
2 (p2 + w1

2)(p2 + «3
2) 

^i     iü      2     i , c ,        2. . 2 ,      2. 
1-kWjWj IP   +«2   ^p   +w4, 

1 + k    «j2 (p2+«2)(p2+«2) 

l.kw2w3     (p   +w2)(p*'+Wj) 

wo(i-k)   Wl
2«2

2    (P2+« 2) (P2+«4
2)    2 

W(l + k)        «3" {p+«1)(p+«2) 

2 l 2 W 

",2- 

This is a network of BE-4. 

Wo(l-k) 1-k    vL Wo   / 
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If.in particular, 

w «w,   or  *»_«**. 

it will be of BE-2.   The condition thereof ia to c'etermine W auch that aatiafiea 

ir"-nr(2k-1,orzirTT o 

The characteriatic ia alike to that of the coaxial network shown in Fig. 10.2.   It ia 

not suited for narrow band requirement«. 

2.5. Derived-M type high-paaa filters 

The networks (c) and (e).  Table 2.7,  have forms of inverted-L type high-paaa 

filtera with single phase lines attached,   as seen from the equivalent circuits.   One 

may consider that they have the charactistics of HP-3. but under certain conditions 

they become HP-1.   The conditions for HP-1 and the characteristics are shown in 

Table 2.13.   Fig. 2.5 ia an example of the frequency characteristics of the resulting 

network* 

The network» (b) and (f),  Table 2..8,  are combination« of derived-M type 

high-paaa filtera and transformer«.   Their equivalent circuits and expreaaiona of the 

characteristics are shown in Table 2.14.   These networks are of specid interest. 

2.6. Band-pass filters 

The networks (b) and (f).  Table 2.7, have forms consisting of all-attenuation 

networks cascaded with all-pass single phase lines,  as seen from the equivalent 

circuits.   The expreaaiona for their characteriatic» are given in the table below.   The 

cutoff frequencies u. and w. will approach to each other as the coupline coefficient 

k tends to zero,  and a narrow band will result.   There are no attenuation poles.   The 

circuits at the bottom of the table 2.15 are also equivalent to those at the top. 

The networks (c) and (e).   Table 2.8,  have also band-pass characteristics,  and 

their equivalent circuits can be given as a combination of an L-type network and a 

transformer.   The constants are as given in the following table (Table 2.16).   As in 

the preceding case, «•>, will tend to w, a8 k tends to zero,  and a narrow band will 

com» out.   One will obtain the simplest 3-element band-pass filters«  as shown in the 

bottom part of the table,  if the condition W«W k (in the network (c), table 2.8) or 
2 Wk ■ W  (1-k ) (in the network (e)) is introduced in particular.   Fig. 2.6 shows an 

example of the band-pass characteristics obtained.    The network (c).   Table 2.9 

is also a BP-2,  and its characteristics are given in the following equations 
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2 
2 

2"  P 

/ W +W(l-k2)     l-k      ,      p2*-,2 

y     wo+w  i+k   p ♦«f 

/ W        f      W (l-k2)") 1+k      , 2 

/w (i + k)      W   + W (l-k2 

./__2   _e  
V  W (1 - k) w+w UnheoVw(l.k) 

o.2- 
wo(i + k) 

"l 2 W + Wjl-k) 

»/■ 
l+k     ll+2 i:ic   11 + 2 

-k»)   J   p2*«^ 

r TT—Z" 
o «.      P   +«2 

W  (l-k) (l-k) 1 

w-} 
Thia network,  like coaxial networks,  ia not suited to meet narrow band 

requirements. 

2.7.   Equivalent circuit» for those networks with unsymmetrical 2-wire linea. 

In preceeding aectiona, those networks were examined, that are built up 

with a symmetrical 2-wire line and one more element.   A 2-wire line can also be 

unsymmetrical,  and the equivalent circuita will be obtained for the networks with a 
19 2-wire line and an element.   Ozaki and lahii      obtained some special cases of these 

networks, with expressions of odd or even transfer impedances- but here the express- 

ions will be given in coupling coefficients and symmetry coefficients for more general 

cases, because of necessity in the following chapters. 

Now, one can use the fundamental equations of transmission Eq. (1.18) in case 

of an unsymmetrical 2-wire line; using Wo, k,  and d in place of Wy, k^ and d2, the 

equations read 

V^V^co. pi+Wo(I10+kl20)j.inßi 

v2 s V20 cos Pi + Wo (k ^0 + d W j sin ßi 

h s ^0 co' ßi *  w (^X    <d V10 " k ^ J'in ^ 
o 

h ' ho co' ^ * w j~^   (-k vio + v2o) i •ln P1 
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One hat only to put condition« of termination into these equations, determine 4-term- 

inal constants, and find out equivalent circuits.   The equivalent circuits obtained are 

shown in Tables 2.17 - 2.19, along with network constants.   Those equivalent networks 

In Tables 2.6 * 2.9 are nothing but those in Tables 2.17*2.19 with the condition, 

d * 1, of symmetry of the line. 

2.8.   Transformations from coaxial networks into coupled line networks. 

Coaxial networks are of the most significance among distributed networks, and 

a good deal of study has been reported on the coaxial networks.    They are practical 

because of the simplicity of the construction of the lines.   On the other hand,  certain 

inherent restrictions do not allow one to obtain networks of versatile characteristics. 

Some trials were made by Ozaki and Ishii,  to adopt a coupled line element,  in order 

to make supplements to the defects of coaxial networks.   Their report is excellent. 

Some of their networks are shown in Table 2.20,  in terms of W , d and k, to meet o 
with this paper.    The boxes in the left column of the table represent unit coaxial lines. 

Those two networks at the lower half of the table have transformers,  and if the trans- 

formation ratio be taken 1:1,  one would have k = I or d,  and consequently   6 * 0 or 

a>,  and the coupled line should take a double coaxial configuration. 

Ozaki and Ishii made no comments on the transformation of tree-and-branch 

networks with attenuation poles.   One can have a transformation into coupled line 

networks, even in the presence of attenuation poles,    through the use of two trans- 

formations described below.    In the two networks in Table 2.21,  W    and W'   are 
2 o o 

of like magnitude,  but k   can be made as small as one wishes.   Therefore there is 

a possibility of easier realization in the form of coupled lines, even if the impedances 

of the resonant lines are of extreme magnitudes in case of coaxial networks.   These 

transformations are useful in making attenuation poles. 

2.9*    Brune Sections 

Lastly, a unit loop will be considered. It consists of 4 coaxial lines in loop 

to realize a Brune section with a negative inductance. Its equivalent circuit is, as 

in the figure,  a cascade of a Brune section and a unit coax U • 

Take 
Z« W /p c r 

in the network (g),   Table 2.18,  then one has a network shown in table 2.22,  which is 

the one under discussion.   Taking off the ideal transformer, one will find that the 

equivalent network will be the same as that of the unit loop.   Conditions of equivalence 

are also shown in the table. 
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Example of a network having Brune sections. 

Take a numerical example given by Dceno in his report, and here will be shown the 

transformation into coupled line configuration. 

Dceno gave an effective transfer coefficient S such that 

S5 =   1 + 
2000 p4 (p2+o.87)2 

{p2 + Z.25)2(p2 + l6)2 

The realized network has negative capactances as in Fig. 2.10(a).   Transforming 
17 these negative capacitances into series inductances by Kuroda's. method   , one will 

have Brune sections.   By further transformation,  unit loops will come out and the 

final network takes the form Fig. 2.10(c). 

Brune sections in Fig. 2.10(b) may be substituted by coupled two-wire lines, 

using the relations in Table 2.22,  resulting a network Fig. 2.11. 

The transmission characteristics have been reproduced from the original 

in the reference (7). 

The tree-and-branch type coaxial networks can be transformed into coupled- 

line type ones by means of combinations of the transformations Table 2.20,  2.21 and 

2.22.   As regards to the construction itself,  the coupled-line type ones may be more 

complicated than the others,  but may sometimes be made up with elements of easier 

realization. 

As stated above,  it has been shown in this chapter how the equivalent networks 

can be obtained,  and how the action of line elements,  especially the coupling,  take 

part in the characteristics of networks.    Novel networks have been studied of their 

properties in detail,  some of which may be of interest.    The equivalent networks 

are represented in coaxial networks,  so that one can also transform various coaxial 

filters into coupled-line type filters,  if he has transformations from coaxial into 

coupled-line networks. 

CHAPTER   3.   Simple symmetrical networks made from three-wire lines. 

Take a 3-wire line,  which has one more wire than a 2-wire line,  a different 

network will be obtained as compared with that having a 2-wire line.    Only the case 

of symmetrical networks will be studied,  for the sauce of simplicity,  because the 

structure of a 3-wire line is complicated. 
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3.1.    Equation! of a coupled 3-wire line 

As described in chapter 1, the equations of transmission of a coupled 3-wire 

line are given in Eq. (1.13): 

[Vj-tVjcosßi + tWJlIJjsinpi- 

[ll » [ Io] cos ßi + IwT1^ sin pi 
(3.1) 

where |[W] is the characteristic impedance of the 3-wire line.   Only the case of 

symmetry is under consideration, so that one may assume a structure in which 

wire 1 and wire 3 are in symmetry with the ground with wire 2.   Thus Eq. (1.32) comes 

into use: 

I»  w^ 

Lk2 

l+k. 

W    =^E 

1 + k2     .2 

,2     ,       1+k2 

l+k. 
- kj (1 - k2) 

l-k2
2 

-kjd-k^ 

-kj (l-k2) 

1+k2     ,2 

(1 - k2) { 
(l + k2)2 

-2k 4 

(3.2) 

Equations of the network will be obtained from the above equations by putting 

terminal conditions of the line ends into the latters. 

3.2.   Lattice representation of symmetrical networks. 

In treating a symmetrical network,  it is more profitable to study the matter 

on the equivalent symmetrical lattice network. 

The fundamental equations of a symmetrical   4 termmrl network (A, B, C, A), 

are 

V[   -AV2'    +BI2 

\   '   CV2   +AI2' 
(3.3) 

which may be rewritten 
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V^L.     1    (A + l).     -i ^-^(A-l) (3.4) 
!•   .I2' C 11   +I2'        C 

These impedances give just the elements of the symmetrical lattice network.   In the 

reverse way, if the voltages and currents of the lattice network is known, one can 

obtain the elements (Z   and Z. ) of the equivalent symmetrical lattice network: that 

is: i     11 

3.3.    Z   and Z. of symmetrical networks made from 3-wire lines. 

Make a symmetrical network,  with input and output terminals on wires 1 

and 3 on the same end of the line as shown in the figure,  then one can obtain Z    and 

Z^, elements of the equivalent lattice circuit, in the way described in the foregoing 

section. 

Substitute voltages and currents of Eq. (3.1) into Eq. (3.5) (pay attention to 

the directions of currents), one will obtain 

V   - V 1        3 Z   ■ a       h-3 I 

W11(l-k2)p + (V10»V30)/(I10.I30) 

1 + 
V V  ^3.6a) 
v10 -30 

Wi^-V    ^o-^o 
In this expression,  (V.. - V.^V (L« - I,-) is determined by the treatment of the line 

end.   Assume that the treatment is symmetrical with respect to the ground as well 

as to wire 2, and write ( V.0 - \Q)/ {1,Q - UQ) = Z    , then one has 

z s   w11(i-k2)P + zao 

a ^ao • p (3.6b) 
1+    ^(l-k,) 

which is equal to the input impedance of a line with a characteristic impedance 

W.,( 1-k, ) whose far end is terminated in Z    . 11        * ao 

Now,  an expression for Z,  will be obtained.   Eq. (3.1) may be written as 
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V+V        V+V rl+k 
1        3         10        30 r 

 «  "  x   cos W+Wll{-T-2(I10 + I30)+klI2o}J8lnßl 

1 +k„ 
V2 ' V20 C08 

1      3       10      30 

0i+Wll{kl(1lO + 13O,+-2-2l2o}jaln^ 

0i + w4 {(1 ' k2) ^T-59 + 2kl(1 " k2,V2o} i ain ßt 

I2 - I2 cos ^ + iH {-ki(1 - k2) -^r-25 + (1 " k2) V2o} i8ln ^ 
'v 

r1+k2)2     21 (l-k2)|-^-2kJ}. 
(3.7) 

With the substitutions 

V+V              v+v 
_l ? m _10 30 = 

2 'b* 2 bo 

Il+I3-V     ^O^SO^o (3-8) 

1 + k 2k 
W,,      r      = W , 

(3.9) 

11      2 o'    1 + k 

Eq. (3.7) may be rewritten: 

Vv = Vu   COB ßt +Vf   (L    + k I    ) j sin ßi 
b       bo o    DO 2o 

V0 » V„   cos ßi +Vf   (k L    + I„  ) j sin ßl 2        2o o       bo      2o 

L  = I.    cos ßi + — „   (V.     - k V0 ) j sin ßi b      bo .       2.      bo 2o 
W (l-k ) 

o 

I   = I2o cos ßi + —i—2- (-k V      + V    ) j sin ßi 
* W (l-k ) o 

This Is identical with the equations of transmission of a symmetrical line having a self charac- 

teristic impedance  W0  and a coupling factor   k.   Therefore one can apply the same technique 

of calculations to   Z^   as that for networks with coupled 2-wlre lines, decribed in the preceding 
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chapter.    Here,   Z.    is obtained as: 

7       Vl+V3       /b 
b      h+h V 

TABLES 3.1 and 3,2 show  Z& and  Z.   of symmetrical networks consisting mainly of a 

3-wire line, combined with another element.   These values were obtained as described above. 

3.4. 3-elemenl networks 

Various networks will be obtained by choosing   Z  In the networks shown In TABLES 3.1 

and 3.2.    Here the simplest cases will be considered,    Z  means an opencircuit or a ground- 

connection.   One may naturally expect 3-element networks, but some may be degenerate,     if 

the both ends of wire 2 are open-circuited or ground-connected at the same time, the wire be- 

comes degnerate; such ones are excluded.    The following TABLE shows networks thus formed. 

Networks (4) and (5) of this TABLE are very alike to networks (b) and (c) of TABLE 2.10, 

and will be identical if one takes   k = o (k, = o).    Networks (6), (7) and (8) are degenerate, 

being 2-element networks,  and do not have advantages of a 3-wire line.    The network (2) will 

be examined in the next paragraph,  and the networks (1) and (3) in the next to next 

3.5. Low-pass filters 

The network (2) in TABLE 3.3 is,  as can be seen 'rom the equivalent circuit,  a low-pass 

one,  with a constant -k image impedance and a derived -m attenuation.    At this point,  it has 

the same property as the network (b) in TABLE 2.10.    The symmetry coefficient.  In TABLE 

3.3, takes a particular value of Eq. (1.31).    Let It be   d    ,    In order to kesp generality, then the 

equivalent network should be corrected as In Fig. 3.6,  and its Image parameters are obtained 

as follows: 

1  - K     ( »1 / 2k2 

Z   ■ /Z Z   = w, o    V   a  b        1 
4 

/           * 

/  '.' 

* R 
\ 

1 

1 2 
P 

d12(1+k2)-2kl 

d12(1-k2)      KP'/    d12(1+k2)-2kl 

2k2 J    1+ 2k2 p2/    d12U + k2) -2k2 
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1 - It 
2        2 2    f 21 

n,    - "n d.2 
'ui 

2 <.I2(i + V -, 
1 

-! 

2         2kl 
d12a -v 

The advantage of this network is that  w    can be made greater easily by making  k    smaller. 

3.6. High-pass filters (I) 

The network (3) of TABLE 3.3 is one of h'gh-pass type.   Generalize the symmetry factor 

as  d      and the equivalent circuit goes into that shown in Fig. 3.7.   Its image parameters will 

be obtained from the equivalent circuit as: 

Z   - W,,   /(I - k2)     Ä 

2,   2 
P   /Wj 

o 11   / ' 2'       .2 ,2,2 
2^ 1 +p /ui 

A'   - d12 (i + k2) -2^ 

2 ,    2 
«/ = A'/2k; 

The factor   (1 - knV'(k1 + k )    in the expression for tanh {6 /2)   is smaller than 1, so that there 

are no attenuation poles.   If one transforms the equivalent circuit Fig. 3.7, it will go into a 

coaxial line with a shunt admittance on either end, which is similar to a symmetrical connec- 

tion of two networks TABLE 2.7(g) in cascade; from this fact one can be sure that he has not 

attenuation poles.   The network can have a greater   u     by making  k,   smaller,  in contrast 

with the networks  TABLE 3.5(5) or TABLE 2.10(e); this feature may be convenient to obtain a 

narrow band characteristic. 
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3.7. High-pass network« (II) 

The network Table 3. 3 (1) will, have an equivalent circuit Fig. 3.8(b),  with 

a general ■ymmetry coefficient d.,.   This network has a significance of having series 

capacitances, so that its characteristic is a high-pass one.   The image parameters 

will be obtained from the equivalent circuit as follows: 

A' «   d12 (1 + k2) - 2 kj2 

Wl
2 « A'/2 kj2 

If d   (l-kjj/A' < 1 in the expression for tank (6 /2), there will be attenuation poles. 
12       « o 

This may be also understood from the fact that the equivalent network can be trans- 

formed into a series derived-m type one as shown in Fig. 3.8(c). 

If in particular,  there is a relation 

d12 k2 - kj2, 

the network will become a constants type one, which is equivalent to the network (b) 

made of coupled 2-wire lines.   Its image parameters are 

^-^i/^^^V 
e 

tanh -£ 

2 

Jl + p2/u 2 

ü.^ « {1 - 2k2)/2 k2 

Fig.  3.10 shows some examples of its frequency characteristics. 

3.8.   4-element networks 

In the networks Table 3.1 and 3.2,  Z    is of one element,  and Z, depends upon 

the choice of Z.   If one takes Wp or W/p as Z,  then Z,  can be of 3 element,  and the 

whole network will be a lattice network of 4 controlling elements, so that one may 

obtain a filter of a band-stop type or a band-pass type. 
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One may choose Z in any way: thoae are deairable that ghre higher network 

grades« while thoae are of no use that give degenerate networks« Those networks 

in the following Tables are 4-element ones made with attention above. 

3* 9« Band-stop networks 

The band-stop networks. Table i*A, will be explained with an example deduct- 

able from the network. Table 3.1 {hi*   If one takes a capacitance as Z in the network 

Table 3.1(h), then Z. will be only a capacitance, and the whole network becomes an 

all-pass.   For this reason, an inductance Wp will be used as Z.   The network will 

then be a band-stop filter.   Here, since 

wo(i - k2)      2 
2 Wä  w + p 

za«wll(i-k2yp. zb-      a 

the image parameters are obtained as 

Z   « /Z Z. o v    »  b 

w 9 o    A   ' 

W       F 

/2 W. ,(1 - k,) ¥r-    (1-k') 
1 + pZ w/wo(i - k2) 

1 + p2 W/ W 

Unh Pji) \/zJ Z, 

/2W11(l-k2)        l^p2W/Wo 

2/   W (1-k2) 1 + p2 w/Wrt(l-k
Z) 

As one can see from the above expressions,  it is Z.  that plays a major role directly 

in the characteristics.   Cutoff frequencies u. and w^ are given by the equations 

w^ » wy W. «2
2 » Wo (1 - k2) / W 

and  the attenuation poles are such that satisfy 

Z   « Z, a       b 

or 

2W       p2 + W   a-k2)/w 
w11u-k2)p.. p +w</w 
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The poles of attenuation correspond to the state of the balance of a bridge network« 

The networks from the top to the third in Table 3.4 are suitable for narrow bands but 

the other two are not« 

3.10«   Band-pass filters22,23 

Band-pass networks will be examined,  with the network Table 3« 1(d) as an 

example«   Take Wp as Z, then Z   and Zj, becomes: 

2 W       p2 + W   (1 - k2)/ W 
Z   « W., (l-k-ji-,  Z. « 2_    « a        11 2   p        b       p 2 p' + w^Hr 

agraph is tha 

parameters are obtained» in like manners. 

The only difference from the preceding paragraph is that Z    is here capacitive.   Image 

z o 

e 
-I" 

/l + p2/«!2 

1 + P2/«/ 

tanh 
/     1+P%,2 

".2 -wo(i -k
2)/W 

2 
w2 ■V W 

R2. wii
2( l-k2

2)|l-| 
2kl 

l + k2 

M2" 
l.k. 

(i + k2) (i - k2) 

The width of  the pass band is 

«   2-«1
2» W k2/W 

and is dependent on the coupling coefficient k ( » 2 k./ (1 ■<- k2)),  so that it may be 

made easily small by making k, small.   Attenuation poles  will be produced at such 

frequencies 

Wo{l -k2)      1 - k2   - (1 + k2) (1 - k2) 
2    . 1- M2 

00 M2 1 w      {1 - k2) - (1 + k2) (1 - k2)2 
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that satisfy tanh (8 /2) » 1.   That ia, one has attenuation poles if M <1 or If 

Those 4-element networks from Table 3« 1(a) and (b) have almost the same 

properties.   Their parameters are shown in Table 3.5. 

Networks formed from Table 3.2(j).  (k) and (1) are also band-pass filters, 

suited for narrow bands.   They are in an antimetric relation to those of Table 3.5» 

as shown in Table 3.6. 

Networks to be formed from Table 3.2(m).  (n),  (o) and (p) are band-pass 

ones but they are difficult to have narrow bands.   One may adopt them as wide band 

ones.   For example, the band  width of the network from (m) is 

w,    - w,   ■  (l + k + 2   -or-) 
' 1       2 W (1 - k) Wo 

and cannot be made zero.   On the contrary,  let k-*l,  then the network tends to a 

low-pass one.    Table 3.7 shows their network parameters. 

CHAPTER 4.    Ladder-type networks 

In previous chapters,  properties of simple networks consisting mairdy of 

coupled two-wire lines or coupled three-wire lines have been treated on the basis of 

their equivalent circuits.   The properties of coupled line networks have thus been 

revealed to some extent,  and at the same time, there are included many networks 

that will be of practical use in their original forms.   Some of them are examined 

in Chapter 10 in more detail,  accompanied by experimental results. 

One might consider about increasing the numbers of wires in coupled lines to 

obtain networks of higher grades.   But the structures of the lines will be complicated 

rendering the manufacturing very difficult-   Moreover,  it is also a difficult problem to 

investigate the relations between the lino constants and the dimensions of line structures. 

Narrow band networks, one of the advantageous types of coupled line networks, need 

high Q elements,  while it may be difficult to obtain high Q elements with lines of many 

wires.   From these reasons,  lines of too many wires will not be used except for very 

special aims.   In this paper, therefore, lines of four or more wires will not be con- 

sidered. 

To have networks of higher degrees,  combinations of networks from 2-wire 

lines and 3-wire lines will be considered.   The manners of combination of networks 

may be duplexing or cascading, just as in lumped network techniques.   This chapter 

and the following give design procedures to obtain coupled line networks, transformed 

from networks designed in lumped parameters, through the use of equivalence 
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relation« described in previous chapters. 

Chapters 6 ~ 9 describe netwo.k synthesis by the extraction    of coupled 

2-wir« lines,  corresponding to the synthesis of coaxial networks by the extraction of 

urat coaxials. 

This chapter describes ladder networks,  which are the most basic in the 

lumped domain* 

25 4.1. L-type networks 

The basic network of a ladder structure ia an L-type network.   In the L-type 

network»  Fig. 4.1, the realisation of the series element is of the severest problem. 

One can use a double coaxial structure to realize a series element.   Otherwise, one 

can realize Z. accompanied by Z,.    If Z, is capacit've,  the degree of Z. must be 

smaller than or equal to that of Z,. 

In coaxial filters,  endeavors lave been made in design procedures to avoid 

the use of double coaxial structures.    In coupled line filters, double coaxial lines 

may be considered as a special case (k = 1 or k » d)   of a coupled 2-wire line. 

Table 4.1 shows examples of simple L-type network,  in which the parts d«k are 

double coaxial. 

If one dislikes a double coaxial structure,  as in the situation of coaxial filters, 

one should consider ladder networks with T-iype structure as a basis,  as described 

in the following paragraphs. 

4.2. Low-pass ladder networks 

If one chooses Wc/p as Z in Table 2.19, then he will have a fundamental low- 

pass network.   Its equivalent network is T-type,  with a low-pass characteristic.    The 

shunt arm at the middle is generally a resonant one,  but it can also be made capacitive 

by a proper choice of conditions; it is very flexible as a basic section. 

The specific feature of an L-type network is in Yu(p) = Y12(p) because Y^p) ■ l/Z^ 

Y22{p) « (l/Zj) + (l/Z2), Y12{p) = l/Zj » Y11(p).   The line constants of the line to be 

extracted are d « k = Y^U/Y^U) ■ Y12(l)/Y22(l), according to Chapter 6.   The 

remaining network has 

Yj'fc) - Y^ (p) - Y^l)  JY^p) - p Y^DJ/I Yn{l) - p ^(p) j 

which again is an L-type network.   But the relation, d = k,    which comes from Y    " 

Y.,»  leads to 6 <> oo,  according to Eq.(1.21); this m?ans the coaxial structure.    In 

other words,  an L-type network needs a double coaxial structure, which is made up 

of a double coaxial combination of bar-type net     -ks of Y.   « l/ Z^ and Z22 ■ Z2. 
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First design a teference lumped low-paaa network (with notice on 

p= j tan 2 wU/c), and then divide it into '1-sections in an  appropriate way.  and 

next transform each section into a couplec line network with the use of equivalence 

given in Table 4.2. 

[Example 1 ] LPF of Wagner character,  n - 6. 

An LPF of Wagner character, n * 6, is given in a ladder structure     as shown 

In Fig. 4. 3(a).   Divide it as in (b) and transform each section into a coupled line one, 

then the whole network will be shown in (c).   (Refer to Fig. 9.5, n» 6, Chapter 9). 

[Example 2]  LPF of non-polar Tchebycheff character,  n ■ 5. 

The maximum loss in the pass band is specified to be 3 db.   Then one has 

«      "1 +-7-+ j"co8 (10 cos " w) 

and 

A ■ 9.1749 p4 + 8.7649 p2 + 1 

C « -E- (32 p4 + 42. 306 p2 + 11.486) 

The input impedance, for 1 ohm termination,  is 

Z    -   A a   9.1749ip44 8.7649p2-H 
ln    "^      p (32 p* + 42. 306 p2 + 11.486) 

3.4878 p + 
0.7607 p + j  

4.4999 p + j  
0.7607 p+j^7ap 

and the network is expressed in a ladder structure as in the figure.   It may be trans- 

formed into a coupled line structure,  as in the previous example.    (As to   the charac- 

teristics,  refer to Fig. 7.5). 

[Example 3] A ladder network of Tchebycheff character with attenuation poles. 

A network with attenuation poles will be obtained if one cascades two series 

derlved-m LPF,   as shown in Fig. 4. 5. (Reports are made on shunt derived-m 

networks in reference (28) ).   Design the image impedance of each section to match 

each other,  and let M of derivation be m. and m, respectively, then the equivalent 

network will be a symmetrical lattice with Z    and Z.   given by: 
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R(m1 + m2)-E-(-Ez   +i) 
«1     Wl 

(1 + m.m2) -£-2   + 1 
<•>, 

r 2      ] 

(rij + m2)  w1 

where u. Is the cutoff frequency and R the nominal impedance. 

Now,  the effective attenuation a of a symmetrical network is 

(4.1) 

Q= 10 log10(l+E4) ■ 
U- 

Z    Z.     2 a    b   . 

'b   t2 
1TC: " "RZ 

(4.2) 

where R- is the resistance of the generator and of the load.   Using the values Eq. (4.1). 

one will have 

(m. + m,) ( 1 + m-mJ-E- | ^-j  + lU, + (1 - -4- )l 
1 L—L-llL        ^^i^^l R    J        (4.3) 

^a-m^a-^JJ^^-^rll-V^-^l R 1 2    Uj l-m^J   luj l-m2J 

Here a new frequency parameter Pwill be introduced: 

p        j •«-      at the upper limit of guaranteed pass band 

u o       j k       at the lower limit of guaranteed pas 

With this P,  the expression of E becomes 

s oana i\ 

s band J 
(4.4) 
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(m. 

E« 

Il(" 

+ m,) (1 ♦ m-m,) pJp2 t"1    Wo    I / p2 +^V(1 - -^»1 1   '      \        1 + m^ [ \ «o
2 R*    J 

» .     -i 

5    „ 2 .. 2.    , 2/2 2/2 

H 
Pfr2 + *2

2)(p2 + a4
2) 

*2 a4   (P   +-V(P+-iT) 
a2 N 

if one bar« the relations 

a2" IT 
T 

R2 

<•>. 
a. ■ 4   wo  yrn^- 

m. 

u. «, 

a2 tto vC^J' a4  wo yrr^ 

(4.5) 

(4.6) 

{m,+ m,) (1 + m.m,) 
H-   —i = 1—=~ 

RT 
TT 

A Tchebycheff characteristic will be obtained if a, and a^ are given to be 

RT      «,    5 
( —) 

o 

(4.7) 

a2-  k8n(^-,  k2),  a4» k»n(-^-, k2) 

Solve Eq. (4. 6), one will obtain 

<•>, 
2    2 

(-^r) 
4 /   2 

l4   {a2 2a,." - a.,"1 (a,   + a.  ) 

w l-a2     6 
l2-»4 

» n»!   » 1 - (  *4) 
w 

RT 2 ».   „ "'    2 2 "l 2 
2'  i3~'   • m2   -l-<-vr- ^ o o 

(4.8) 

(4.9) 
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Actual numerical values will be computed.   Let the guaranteed paas band 

0* 0.8207, then one has 

k» 0.8207. «   = 1, a,2= 0.2796, a.2« 0.6251 

which yield 

w 2 « Z x 0'62S1 x 0.62512 (0.2796 + 0.6251)     m 0    ^ 
1 1 - 0.2796 x 0.62513 

m*'    1 - 0.6251 xwj2- 0.3996 

m2
2=   1- 0.2796 xwj2* 0.7315 

R   2                       1 
(^-)   « ,- * 1.4095 

KT 1-0.2796/w^ 

The final «. lues of the parameters are obtained to be w s 0.9810, m, « 0.6321, 

m2 ■ 0.8552. R/RT = 1.187. The network will be like the figure, for the value 

R— « 1. The network, obtained by the transformation Table 4.2. is also shown 

therein.   Its attenuation characteristics is shown on the next page.   (Fig. 4.7) 

4.3.   High-pass lattice networks 

The network Table 4.3 will be examined,  as a high-pass basic network.   Its 

equivalent circuit will be given to be a T-type one, from equations obtained by  putting 

end conditions into Eq.    (1.25).   As in the low-pass network,  the arm in the middle 

is resonant,  and can be an inductance according to conditions. 

One should design a HPF in a ladder network,  divide into appropriate T 

sections to be cascaded,  and transform each section into coupled line structure. 

[Example l] HPF of Wagner character,  n - 6. 

A frequency transformation p-*l/p, applied to the network Fig. 4. 3 (b),  will 

produce a HPF <f  Wagner character, n - 6r as shown in Fig. 4.8 (a).   One have only 

to transform each section into a coupled line structure. 

[Example 2]  HPF of Tchebycheff character without poles. 

The LPF in Fig. 4.4 will be transformed into a HPF of Tchebycheff character 

without poles,  if a frequency transformation p~*l/p is applied.   As in the previous 

examples, one have only to reform the network in coupled line structure, by the 

use of the relations given in Table 4. 3.    One can also realize it into a combination 

of two-wire lines without using a 3-wire line,  if he   makes use of the equivalence 

relations in Table 4.4. 
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[Example 3] HPF of Tchebycheff character with polet. 

Apply a frequency transformation p«l/p to the network Fig. 4.6, and utilise 

transformations Table 4.3. the network  Fig. 4.10 will result. 

4.4.   Band-stop and band-pass filters. 

Network parameters of BEF or BPF may be obtained by applying a frequency 

transformation 

-       ^P 

P   +»0 

A:   bandwidth { "> " wi^ 

«   :   center frequency   (/w  w.) 

to those of LPF or HPF.     The structures of line elements will be changed as shown 

in Table 4.5.   For instance, one will obtain a configuration Fig. 4.11, if he looks 

for a BEF with an application of the frequency transformation to the LPF in Fig. 4.4. 

Obtain a BPF from the HPF in Fig. 4.9.  a configuration Fig. 4.12 will come out. 

The relations, among the elements of LPF or HPF before transformation and 

those of BEF or BPF after transformation, are complicated, and omitted here. 

CHAPTER 5.   Narrow band filters. 

In the preceding chapter, there is described how to realize primitive and 

basic ladder networks in the form of coupled line type ones.   The method adopts 

T-networks as basic,  rather than L-networks,  and enables one to avoid the use of 

double coaxial structures. 

One may come to a difficulty that the values of the elements may not happen 

to lead to easy construction in an actual network design.   It is very probable to come 

to the necessity of line elements with extremely large or small values, if the designer 

assumes an extremely high or low cutoff frequencies, or extremely narrow pass band; 

such elements will bring him to   distress how to make. One can make shielded line 

elements with characteristic impedances only from 10 to 200 ohms,  so that he has 

much more restrictions than in the design of lumped networks.   Even in lumped 

networks special design techniques are used in narrow band filters.   Similarly,  in 

distributed networks one should have special design techniques in narrow band filters. 

In lumped networks, there is a technique of coupled resonant circuits,  which suggests 

the use of coupled resonant lines of quarter or half wavelengths. 
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In this chapter, the theory ■tarts from ladder networks and comes to a 

result with coupled resonant lines.   From the coupling point of view, one will notice 

that the structure of a coupled line network is very flexible.   This Is an advantage of 

couple 1 line networks. 

5.1. An example of a narrow band filter. 

Here will be explained a BPF of Wagner character, n * 3.  as an example of 

a narrow band filter.      Fig. 5.1 shows its lumped representation; as one takes the 

bandwidth A= w. - w   extremely small,  the value of the series element will become 

very large while that of the shunt element very small.   One must have a different 

procedure in mind,  because the values of the line elements will be of extreme ones 

if the network is designed in the way described in the preceding chapter.   One can 

obtain realizable values as described below. 

First insert ideal transformers so that the factors A in the series and the shunt 

element will disappear.    The insertion of such ideal transformers should not affect 

the transmission characteristics of the network.   The network goes into that shown 

in Fig. 5.2,  where Ais related only to the transformation ratios of the ideal trans- 

formers. 

One has to make up this network in a coupled line type;   but since an ideal 

transformer can only be realized if it is accompanied by some elements on both sides, 

one may connect lines in cascade without changing   the amplitude characteristic of 

the network.   The amount of the phase shift of the network increases inevitably by 

the amount contributed by the coaxial elements added.    The network is shown in Fig. 

5.3. 

Divide the network by the broken lines into five portions; each portion may be 

transformed into coupled line type ones through the equivalence relations given in 5 

App. 2. 3 and 2.2,  and the whole network will take the form Fig. 5.4.    This may also 

take the form Fig. 5.5 or 5.6 if one applies the equivalence relations of 5 App. 3.1 or 

3.2. It will be noted that the center frequency w    is taken 1 in the networks Fig. 5.4 

and 5.6« 

The above procedure may be summarized as follows: 

(1) Add 1 ohm coaxial lines to the input and output terminal» • 

(2) Insert ideal transformers,  so that Ais related only to the ratios of 
transformation. 

(3) Transform each portion into coupled line type. 
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5.2.   Narrow band filter« with coaxial lines added. 

Example« will be given on BPF,  of Wagner characteristic«,  with coaxial 

line« added to the input and output terminal«,  in the same manner a« described in 

the preceding paragraph. 

[Case n ■ l] 

A network of Wagner characteristic,  n * 1,  of a series resonant type«  shown 

in Fig. 5.7a,  may be traneformed into one shown in Fig.  5.7«,  if one add« 1 ohm 

coaxial line« to both end« (b).  insert ideal transformer« (c)>  and apply transformations 

5 App. 2.3 and 5 App. 1.   It may also be transformed into one in Fig. 5.7f (30) or 

5.7g,  by the use of the relation« given in 5 App. 2.1 or 2.5. 

In the network Fig. 5.7b,  one may invert the phase at the output terminal 

without changing it« amplitude characteristic« (Fig.  5.8a).    Represent it in a lattice 
(22) network (b),  and one may al«o have the network        Fig. 5.8c,  with a coupled 3-wire 

line, by the use of the relation« given in 5 App. 3. 3. 

One may al«o «tart from a parallel resonant circuit Fig. 5.9a, inetead of a 

•erie« resonant one.  Fig. 5.7a.    First,  add 1 ohm coaxial lines   (b),  insert ideal 

transformers (c),  transform by the relations 5 App. 2.4 (d),   retransform (e),  and 

finally one will obtain the network (f) or (g)       , by the relations in 5 App. 3.1 or 

3.2. 

[Case n « 2j 

BPF of Wagner character, n » 2, has the form Fig. 5.10a.   With this as a 

basic network, one will obtain the network (d) or (e) in the figure. 

[Case n * 3J 

If one starts from the network,  n ■ 3,  in Fig. 5.1,  he will get to the networks 

Fig. 5.4,   5.6,  as described previously.   Start from the network Fig. 5.11a,  then 

the networks (c) and (d) in the figure will be obtained. 

As an alternative method, one may also have the network Fig. 5.12(f),  if he 

moves the coaxial lines. 

[Case n « 4] 

One may obtain various network,   depending on the manner of transformations. 

Some are shown in Fig. 5.13. 

One can have networks in almost the same manner for greater values of n. 

For a value of n. there may be a variety of networks, from which one may choose those 

with fittest structures.   No further comment will be made on this point. 



PIBMRI-1048-62 37 

[Examination of the expressions of the characteristics] 

The change of the expressions,  of the characteristics,  will be examined,  that 

will be brought about by adding coaxial lines.   The square amplitude function (y ) of 

the basic network, that contains no superfluous coaxial lines, is given 

y2=    |S(p) |2=4[l+ 62   {<P(P)}2] 

where  (p (p) is the original function. S (p) the inverse transmission function* tjid 6 

the constant of deviation.   Also the input and output resistances are taken to be both 

1 ohm. and the minimum attenuation to be 2.   To increase the number of circuit elements 

without changing y . one should multiply t' e numerator and the denominator, of the 

characteristic function |<p (p) j   .  by the same factor.   Multiply them with (p   -1) . 

then 

2      . y      3   4 1 + 62{V(P)}2        (p2 "^z 1 <5-2) 

and the inverse transmission coefficient S' (p) becomes 

S' (p)=S{p) ilLÜL (5.3) 
P   -1 

TMs function has a degree 2 higher than that of the original inverse transmission func- 

tion S (p),  corresponding to 2 more circuit elements;   y   itself is not changed,  of 
course. 

The calculation will be shown on an example of Wagner characteristic« n c 3. 
mentioned above.   In Wagner case« 

{,(p)}*.{..(4±i)
2}n (5.4) 

and one has, taking  6=1, 

y
2.4     H.|-(£^ti-)2}   "(  \-Z i)2] (5.5) 

where A gives the bandwidth: 

A« w, - Wj J/~wTür^   »w    «1 (5.6) 
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Th« center frequency v^ it here taken to be 1.   The inverse tranemiesion function 
is» for Wagner character n ■ 3, 

and the inverse transmission function S' (p). specified by Eq. (5.3). is obtained, from 
Eq. (5.7). 

J    {p   -I) 

The function 9 (p) Is: 

Separate S' {p) and <p (p) into odd and even parts 

„(p^ZC-Ctl)" (5.9) 

S' (p)«   Hj + p^ (5.10) 

q> (p)«   Cl + pG2 (5.11) 

where H   and G. are even parts,  and p H, and pG,   are odd parts.   Network parameters 
A«  B>  C, D can be obtained: 

A.D=  ^   ^ 

_ {i^f+W+v+A^Ji^**2} **> 
1-p^ 

B--|-(H2+G2) 

[t&rS "]*? + * (A&J " -^(p2^ 

{5.12a) 

M. ±U:  (5.12b) 
l-p2 
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or -{*<4^M !1)2  +l[2p + 2p2(£!+JL)3  +2 ClLCp2*!) 

l-p ¥ 
2 

C.-5-(H2+  G2) 

(5.12c) 

(5.12d) 

These expressiona will give the network Fig. 5.3 or Fig. 5. lib« 

The same applies to other values of n. 

5.3.    Networks obtainable as cascade of lattice sections. 

In preceding sections, examples were shown to make realization easier by 

adding coaxial lines to both terminals.   Other manners may also be taken into consid- 

eration*  in adding surplus elements.   For instance,  aid surplus L and C to a network 

Fig. 5.14a of Wagner character n * 1,  one will have a network (b)'     .    Notify the 

elements as shown in the figure, then the network  parameters are obtained: 

Ai- (1 '.'_ ) + p2 L   c 

B 

C- 

1 v2 

PZC2L2 + 1 p2 Cj Lj + 1 

P2c2L2 * 1 

p2 L2 (Cj + ^j+l 

PZC1L2 

(5.13a) 

(5.13b) 

(5.13c) 

(5.13d) 

This network cannot be symmetrical.   Assume it is antimetrical; then, since B * C, 

it is necessary that 

L1 + L2=C1'    L1C1=L2C2 

Also the square amplitude function y   becomes 

y2 « 4    [l + -^ (A - D)2 ] 

(5.14) 

« 4 

■ 4 

1+. 
h L2 Cl C2 p    " 1 

6 

}] 
1+-^ 

(LjC^-l) (L^p^ + l) 

2 cl L2 p i'l 
(5.15) 



PIBIUfI.104S.62 40 

If on« assumea the condition 

Lj Cj - L2 C2 - I  ( - l/«o
2) (5.16) 

then h« has 

Let the frequencies, at which the effective attenuation becomes 3 db, be w, and «,• 

These are the frequencies where the magnitude of the characteristic function becomes 

unity.   Thus, putting «. and «•>, into the above expression, one has 

4     , 4   , 

*     l'    ,r.T   .    2     •-1 (5.18) 

which yields 

ZC]Lfl Kfr-z 

2ClL2-7Z-Ml2-"22--T- 
wl w2 

«2
2 - «j2 = («2-Wj) («2 + «j) {5.19a) 

« 2«  2  «= 1 (■ w  4) (5.19b) 
i £ O 

Denote u , - w, « A, w.-fw.cK, then 

2 
y -[-(^ ^f] ,5-"1 

This is evidently different from the Wagner character already described,  and 

also different from those of 3-element networks described later. 

Next, one may determine the values of the network elements of Fig. 5.14 (•„), 

so that the characteristic follows Eq. (5.20), by the use of conditions, Eqs. (5.14), 

(5.16) and (5.19).   They are: 
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1  Vl + AK/2 

>/l + AK/2 

C^ >/l +AK/2 (5.21C) 

ViTWL_ (5.2ld) 
* AK/2 

as shown in Fig. 5.15 (a).   This network will,  by transformations, go through (b) to 

(c),  which is a cascade of a symmetrical lattice network of L only and another 

symmetrical lattice network of C only.    This is the specific feature of this network. 

and it can be easily realized into a coupled line network by means of the transformations 

5 App. 2.1 or 2.2.    The result is shown in (d). 

The above discussion started from a Wagner network of n s 1; the reasoning 

will apply if one starts from that of n = 2.   Add two L's to a Wagner network Fig. 5.l6{a) 

transform the resulting network (b) by appropriate transformations»  and finally a 

network (d) will be obtained which is a cascade connection of symmetrical lattice 

networks.   The same will happen,  if one adds C's instead« of L's,  and the result 

will be such that the lattice of L in (d) should be replaced   by that of C,  and the lattice 

of C in that of L.   One has no change in the procedure starting from Wagner networks 

of greater n,  and the destiny is always a cascade of symmetrical lattice networks. 

The characteristic functions of this kind of networks can be made to have the 

forms: 

case n- 2 A   (P   +^    -^-^ f (5.22b) 
1     (Ap)2 kp    J 
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CM« n ■ 3 J(p2ti)s (p2-1)Y 
(Ap) (5.22c) 

caae (5.22d) 

One can ootain network parameters from these characteristic functions; here 

one has to factor ire algebraic expressions of higher degrees.   Instead,  one can better 

determine element vales, by choosing conditions that the amplitude characteristics 

may be represented by the equations (5.22), because   the network configurations are 

already known. 

LAdd elements to a network n = 2 J 

If one starts from a network of Wagner characteristic n = 2,  the network 

Fig. 5.17 will come out.     Its elements can be chosen as shown in the figure, because 

it must be a symmetrical network.   The network parameters are: 

(L2 + Lj)' (Cj + C2) 

(L2 - L/ (Cj - C2) 

VP
2 

+ i + 
4LiL2 

4 LJ^CJCJP 

[^ + C2) (Lj + L2) (Lj + L/    (Lj + L2) (Cj + C2) 

(5.24a) 

B 
(L2 + L1r(c1+c2) 

(L2 - hj)*^ - C2) 

2^>           4 L.L, p 
 +  Li + 

Cl + C2 

MLjL/c^p3 

h + L2 (L1 + h1    (C1 ^Z» 

(5.24b) 

(L2 +L1r(c1 +C2) 

' (L2 - L^ .C2) 

8/p: 
4/p ,   2C1C2 

(Lj + L2)'(C1 + C2) ^ + L2        C1 + C2 

(5.24c) 

D« A 

Since A - D «     ,  the square amplitude function is related to (B - C), 

y2-^!-^ (B-C)2] 

(5.24d) 

(5.25) 
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Obtmln B - C: 

B ■ 
c _ (L2 4 l^)2 (C, + C2) 

{L2 - Lj)2 (Cj - C2) 

8 [(L^)2 CjC 3     1 

(Lj + L2)Z (Cj + C2) 

4(pLlL2--l)     ^     2(1-.pCj^) 

Ll + L2                          Cl + C2 

The relation 

Ll L2 = Cl C2 = 1 

(5.26) 

(5.27) 

ia necessary,  in order that B - C ha« a factor p   - 1.   Put this relation into (5.26), 

then 

B - C 
(1^ + L^Cj + C2)  r     8 (P

4 + p2 + 1) + L.^ lOj + ^2)  f      «Mp   + p   + 1) 

- LJ^CCJ - C2)  1   p3 (Lj + L^JcJ + C2) 

(5.28) 

8 (pÄ - 1) 

(L2 - Lj)2^ - C2) P
3 

r 4 r  (Li (L, + L2) (Cj + C2) 

(L, + L,) 

^-] p2 + l 

and one has the factor (p    - 1) as he should.   Moreover one must have the factor 

(p   + 1)    in order that B - C would have the form Eq.  (5.22);   that is,  the expression» 

inside the brackets on the  right hand side of Eq.  (5.28),  must be equal to (p   4- 1)  • 

Thus,  it is necessary that 

1 +    (L1 * L2MC1 * C2)   _ <L1 * L/     9 (5.29) 

Further,  the coefficient of the right hand side of £q.(5.28) must satisfy,  comparing 

with Eq. (5.22), 

2(L2-L1)    (C^C,) 
 8 = A   K (5.30) 
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If these are the case, y   takes the form of Eq. (5.22); 

2 . ,»2    ,2 

^Hf^*^}] 
From the condition* (5.27),  (5.29) and (5.30), the network elements are obtained: 

(C12 " 1)2 2 1 

1 
(5. 31 a. b) 

'1" Cl ± ^ Cf-l    .     L2-   1 
(5. 31c. d} 

T   give the network in a coupled line type,  one can apply transformations 

5 App. 2.2, and the network Fig. 5.18 will be obtained. 

The same may be done with adding C's to a Wagner   network n * 2.   Here one 

have to replace pL by l/pC by pL', and he has 

B -C- 
(C^ -C2

,)Z(L2- Lj«) 

ea-p^^Cj'2^« L2') 

pNc/ i-C2
,)Z(L1' +L2') 

4(l-p2C1
, Cj»)      Zfo^'L.' -1) 

+   picprep   + —POV + V) 

Under the condition L.1 L2
, « C,' Cj' « I, It goes down to 

(5. 32a) 

B-C- sd-p^) 
<C1

,+C2
7)r(L2'.L1') 

2r     (C^c^Miy+V) 
p  +p  -^1 +  

(C/ +0,') 

To have the form Eq.  (5.22),  it is necessary that 

(5.32b) 
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{C* +C  'MV +L ')       (Cj'+C,')2 

1 +   —i =---i 5 1    .    ^       - 2 (5. 33*) 

(C' -C  '^(L' -L.') , 
—i       *       — "   AZK (5. 3?ib) 

From theae relation«,  the elements are determined: 

<L2 •
2 - I)2 

-  «   A2K, t   • 
L2, h 

C2 ±VL2'
2-i . c 

1 

1 

(5. 34 a, b) 

(5.34 c, d) 

Theae values have,  in comparison with those in Eq. (5. 31},  the same forms with the 
correspondences L,'■• C,, Lj'-^C,,  C-'-^L.,  C.'-^L,.   Numerical values of Eq. (5. 34) 

may be obtained from Fig. 5.19 with the respective correcpondence.    In the coupled 

line type network, one has to make correspondences W. '-♦W , W  '-»W. ,   k  '-»k. • 

(Add elements to a network n * 3] 

Add excess L's to a Wagner network n = 3,  a network Fig. 5.21 will be obtained 
v-hose network parameters are: 

(L2 - LJHCJ - C^O,^ - V^l* " V1 
L 1

4 p2 LiL2cic2 U^llVVC
I
CA 

JZE. +^ Pc/c • 

lVC2        Ll+L2 i  I h'+h' Cl' +C2, J J 

(L2+L1)(C1+C2)(L2'+LJ ' X^'+02') 4 p ^^C^ 1   f Ji+IL33IiIi.l. 
I      {L1+L2){C1+C2)J1 

l/p        p L^LJJ' 

L (CJ'+CJJ'    Lj' + i^ 

Lc+C,    L, + L,   J    v (L.'+L^UC'+C,') JJ Ci+C2    Li (L1'+L2'){C1•+C2•) 
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(L2-L1)(C,-C2)(L2•-Ll•)(C1
,-C2

,) [    1 Lj+1^      Cj + CJ \        {L^+LJ-HCJ'+CJ')/ 

I       (^ +L2)(C1 + C2) J I   Lj« t^' Cj' ■♦•C2
,JJ 

^{L^LJHCJ+CJH^'+LJ'KCJ'+CJJ')   r   r   i/p      P c^w     i/p        p i^'^' -^ 

{i+—^ i  {i+ ^E!  
«•       (L^LJMCJ+C^J       I-       (L1•+L2•)(C1•+C2• 

+ ii + 
(5.35) 

If B ■ C, as an antimetric one. the 4 conditions, 

hh-SIV'   Li,L2,'sCic2 
Ll+L2-<V + C2',     L^+^'-CJ + CJ 

are necessary.   Rewrite A and D under these conditions« 

2 

(5.36 A, b) 

(5.36 c, d) 

A- 
(L2+L1)(C1+C2 ){L2' tLj' XCj' +C2') 

(L2-L1)(CrC2)(L2' 

(L2 + L/ (CJ + C2)2 

(Lj-LjHCj-CjHV-iyHCj'-c^) 

Add one more condition 

f Vp |       ^    l/p     pc1 c2 i -I 

(5. 37 a, b) 

L1L2 " C1C2 ' 1 (5.38) 
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then A - D will have a factor (p   - 1) aa follows: 

16 (p2 - 1) (p2 + 1) r   4 
A- D-     p* 

♦ C^   2   V  2    L + (Ci+C2)2 . (L^)2! p2 + ij 

2        2 In order that the expression inside the brackets is identical to (p   + 1) ,  it is 

(5.39) 

necessary that 

(C,+C2)(L +L ) , , 
_L_i L_i_ { 2 + (Cj + C2r - (Lj + L2)2 J - 2 (5.40) 

Moreover, if thi coefficient has the relation 

(L2-L,)(CrC2)(L  '-L 'HC '-C,') 
21122 i i~=A3K (5.41) 

8 

then the characteristic function will take the form Eq. (5.22).   From the 8 conditions 
in Eqs. (5. 38). (5.40),  (5.41) and (5. 36), the values of the elements are determined 
by solving the relations: 

Cj« I^'.  C2= L^.  1^= C2',  L2« Cj' (5.42a.b.c.d) 

,2 8 A3 K+ ^{(LJ+LJJ)2 - 4} 
(C. + C,)   = «i  (5.42 e) 

(L1 + L2)2-4 

(C1+C2)3(L1+L2) + (Cl + C2)(L1 + L2) {2 - (L^)2}  - 8 » 0 (5.42f) 

Fig. 5.22 shows the relations between A and A    K, between A and values of the elements. 

The same procedure applies to greater values of n. 

[Note] The attenuation character of this network differs from those of Wagner 
networks in the point that the former has the factor (p   - 1)/K p in surplus.   A new 

frequency variable may be defined 
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Th» uau&l frequency transformation.   Then the aurplue factor is transformed into 

2 \    A P2- 1  „    p2 ♦! - 2       A      m(     , 

P« xf AP,i V^^P')2- 4 ) 

Ala very «mall,  if one is concerned with a narrow band.   So long as Ap' « 2, one has 

p«.   j I,    Ksu,+w,£. 2w    «2 r       J 12 o 

PZ ~ i j   -L 
'■■HI     • »» '    ■< ' — JTp j 

Therefore the characteristic function approximates |> (p1)   }    »  and coincides with 

that of a Wagner network.   That is,  the attenuation character in the neighborhood of 

the center frequency is like a Wagner one«  if A is small. 

For an exact computation, one has 

2wf 2irfl 2*f2 
p« j tan (-^-i-I) , w. » tan ( if), «.« tan ( ^ i) 

C 1 c * c 

with which one obtains 

^r- 
.2 „     2    2irf    .      . j    tan       i - 1 

2IT f, 2 w f.    ~ _      , 
(tan -i  -tan i i) j tan ■£-!—i c c      ^ c 

Bin 
fl 

■i) 

sin (2' 
J_ 

i) 

and consequently the characteristic function becomes 

>2 2Trf, 
tan( 

2 irf. 

tan ( 

c 
i) sin ( 1 

i) 

.i)8in(i-lLLi) 

Then one has only to assume f. to make computations« 



PIBMRI-1048-62 49 

5.4.    3-eleinent band-paaa filters 

The basic circuits of band-pass filters,  called 3-element type ones,  are shown 

in Fig» 5.23;   they are capacitance-coupled or inductance-coupled,  and are widely used 

in intermediate frequency amplifiers and the like«  as lumped networks.   Design methods 

are given in references (32) and (33) with the use of approximate fromulas near the 

center frequency.   Some techniques are also reported in reference (20) to have coupled 

line filters.   Here will be presented those derived by the procedures described in 

preceding paragraphs. 

Filters of this type have unsymmetrical attenuation characteristic with respect 

to the center frequency; networks (a) and (b) have greater attenuation in the upper 

frequency side«  while networks (c) and (d) have greater attenuation in the lower 

frequency side.   As to the values of elements,  those of series arms in networks (a) 

and (c) are inversely proportional to the bandwidth A«  and will be very large   if A is 

small;   on the other hand,  elements of the shunt arms in networks (t) and (d) are 

in the opposite relation,  being small with small A.   Other elements are directly or 

inversely proportional to K ■ w. + u_,  and do not change much with the variation of 

bandwidths.   To have a narrow band«  one can insert transformers whose ratios are 

related to A  so that he has elements related only to K.   Thus one need not add any 

new elements,  to the contrary to those networks described in the previous paragraph. 

In Fig. 5.24 are shown coupled line networks derived from 6 such sections in 

cascade. As to the element values, one can refer to the literature. Here are shown 

only the derivation of coupled line netvorks and their configurations. 

5. App. 1.      Kuroda's Theorem 

The equivalence of the two networks below is given by Kuroda,  under the 

conditions 

, 2 
o   B       g   d K=        C 

c a a + b a (a + b) 
 E  

5.   App. 2.   Equivalent circuits of networks with 2-wire lines 

[App. 2.1]   From Table 2.18 (e), 

2 . vi 2 cn+e       .     o   „     c        en         ,                  en W a a ■   '       .       ,  d ■ — + m   ■ y— , k« m ■ y— 
n cn+e cn+e 
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2. .  2 
s  +e - W. b - SJE^L - W (d - k2), m - -SJ_ . k 

n~ c n +e c n +e 

c ■      %b      » wa--^-). e- am2 + b-Wd. n«*1"   ^ b ■ -g- 
mmZ4b ^^ am HT 

In cas« of synunetry: 

11 1 ^1 " ^2 
2    Cj     c2 

ci + c2 

fApp.  2- 2j From TABLE 2.19 

en +e j       b 2      en .en = a «  j^ , d = ——   +   m   = —« , k = m =  >  
n " en +e en +e 

a= W = cnY     . b= W(d.kZ) = l^_, m=k,_J»__ 
n en +e en +e 

2 2 
„ _ -ur »i     k  •        ab m, 2     . d am +b c = W (1- —|—) a  .— ,  e s  wd = s».m    -t- b« n = -r— = ——— a .W^XK k am am +b 

In case of symmetry 

w.4-(L.+ L2).k=-^u d=i 

[App. 2-3]   From TABLE 2.17 (c): 

2x v.     9     2 
w     en +c   ,  b ,  2  en    ,       en 
w - a =   y   • a = —— + m =  ■   , k = m =  ■ 

en +e en +e 

a =  1   = W, b =  ■   i m = k =  ■< 
n en +e en +c 

2,,      ab      am +b 
c = am +b. e =   ■ > n =   i.. am am +b 

[App.  2.4 ] From TABLE 2.17(d): 
7 7 

bm w _  am +b               j _ 

m 

,2                ,2 bm                c+en         , 

am +b 

a = W (1- 4-) = -^-. ,   b = Wd = c + en2, m 

am +b 

2 d     _    e+en 
K en e+en 
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2 2 
c = W (a-k ) = —j-—, e = W = —«2— , n - K- —j  

am +b m am +b 

[App. 2. 5]     From TABLE 2.17(c): 

W = a + en  , d =  y— ,   k = —'■—~- 
a + en a+cn 

W    = b,   a = W (1- -4- ) , b = W e d c 

c = Wd,   n =       k 

5 App.  3.     Equivalence Relations between networks of coupled 3-wire lines. 

[APP-  3.l] ?        ? 

Wll Wd +W ' W22 * d?Wll "    Wd+W 

w      _ rf w    -    WdW'df W12(d'  -k12) 
W33 ' d3Wll Wd + W  

Wllih2 "   Wd+W— '    Wllk13   "    Wd+W  

w   k     -     ydW'd' 
Wllk23 Wd+W 

lApp.  3. 2]    The two networks (a) and (b) are assumed to be symmetrical. 

Wll = Wll,   '   ^3 = k13, 

d2                  d2,           ,      2k12,Z 

■W^       = -WJ +   ■Wn
,a'  

k122 ^   (V  (l+k13
,) + Wll•a,} 

d :     =   
2 W3'2k12

2 + W11'd12'a' 

=   '{^\3   >d2'  ■2k12'2J 

V2 _    Wllk122 w     ,    W3<1+k13) 

'a2T~ W3+Wnd2 "       d2 (1+kj^) -2^ 
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3^—  "       W3+WUd2      V11 +     d2{l+^3) .2k 2
Z   j. 

LApp« 3. 3j     The network (a) is assumed to be symmetrical. 

W11=4_(a + b).k13=-^- 

^12' 
~S7 

w. 
(a+bXb+c) 

e      a + b 
T   TTT 

a = Wu (I - kjj). b = WJJ (1 + 1^3) 

<i2 (1 + ^3) 
c   = Wll (1 + k. 3) {i^., 

d = WJJ (1 + kjj)' 
2k12 
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(34) CHAPTER 6.    Ext-action of a two-wire line l    ' 

Extension of Richards' key theorem to 4-ternünal network» 

In Chapters 4 and 5 are described ladder network building procedures,  con- 

necting sections of simpler structures, in a manner developed by Zobel.    This is 

because it needs complicated line constructions if one tries to obtain networks of 

higher degrees by means of using coupled lines of increased number of wires*    This 

will meet most requirements in practice.    Synthesis of networks is not necessarily 

unique,  and some other procedures may also come into consideration.    Even in lumped 

networks, one may consider Cauer' s lattice networks along with Zobel' s ladder net- 

works. 

In coaxial filters,  it is usual to use combinations of shunt elements and cascade 

elements (unit coaxials).    The same is applicable to coupled line networks.    This 

chapter and the following chapters describe synthesis of networks by combinations of 

shunt and cascade elements of coupled 2-wire lines.    Shunt elements have no problems. 

The treatment of cascade elements is more or less complicated and needs a detailed 

examination.    This chapter describes the extraction process of cascade lines, and 

proves that Richards'  key theorem can be extended to multiterminal networks. 

6-1   Equations of transmission in a coupled 2-wire line 

Equations of transmission will be again cited.    Among voltages and currents 

of a parallel 2-wire line,   set up arbitrarily over the ground,  hold the following rela- 

tions.    Here it is assumed that the line is lossless. 

V1 =  V10 cosßi + Wo (I10 + kl20) j sinßi 

V2=  V20cosßi+Wo(kl10+dI20)jsinß£ 

I   =  I,    cosßl L_--   (dV      - kV,  ) j sinßf 

0        1 
I2 =  12    cosßl + i-Z-("kV10 + V20) j 8inpl 

(1-18) 

W   (d-k ) o 

where i is the length of the line,       ß ( =  2 ir f / c)   the phase constant of the line, 

W   the self characteristic impedance of the first line, d the symmetry coefficient of 

the second wire to the first, k the coupling coefficent between two wires.    These para- 

meters are determined by the cross-sectional structure of the line, and d = 1 in a 

symmetrical line. 

6. 2   Cascade adding of a coupled 2-wire line 

The network parameters (Y,,, Y,,,  Y12) will be obtained, of the network Fig. 
6. 2, which is made up of any four-terminal network (whose admittance parameters 
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are Y^' . Y^ . Y,,' ) in cascade with a coupled two-wire line (with line constants 

VT      d. k ) in front, o 

Set the voltages and the directions of currents as shown in the figure, one has 

the relations, from Eq.  (1.18), 

IV]   '    [V0]     co'P1   +[W1   I1*]     J'inP'\ 
ißl   + fWl^fV 1   j sinpl  I 

(1-18) 

Iv 1    and [lo] are related by 

l-x12        I22 j. 

Put this into Eq.   (1.18), then one has 

[l]     =      [(y,)+   [w]   p)(l]   +[w][y-]p)-1[v] (6.2) 

Represent this relation by 

[l]-   [y][v] (6.3) 
Then    yl will be represent« 

W-[>   'III 
I  JIZ XZZJ 

This in the admittance parameter of the new network thus made up.    In 4-terminals 

networks, the entries of lyl are as follows: 

o 

O _ 
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- Wc2 PZ ( X\Z    - k YZZ* » < d YlZ*  " k V > 

Here it will be noticed that upon putting p = 1 into Eq. (6. 4), it will yield 

ijy («I -1 [y («]| * M -1 }i [ («* fw| f^''»] 3' • M"1 

and a relation 

i?,,J' |L-YUO)    Y22a)J ^r?7 f-k   ij 

which is independent on [jy'l 

(6.5) 

(6. 6a) 

(6. 6b) 

6. 3   Extraction of a coupled 2-wire line 

Now, in contrary to the previous paragraph, an extraction of a coupled 2-wire 

line will be considered from a given four-terminal network (Y,., Y-_,  Y.,)' 

It has been shown that, in the ..jtworkf y (p)l composed of an artitrary network 

ll y'  (p)lj an(i a coupled 2-wire line of characteristic impedance -[w ! in cascade, the 

relation Eq.   (6. 6) holds which is independent on j y'   (p)J .    Therefore, if [y (p) ||    is 

given, one can obtain  [ w] of the coupled 2-wire line, putting p = 1. 

W 
Yll<^ 

0      Yll S   Y^Ö) " ^xz^ 
Zll <« 

k = 

Y
22(l) 

Y12{1) 

z22(i) 

z11(i) 

Z12<1> 

^(1) 

(6.7) 

Y22(l) 

The remaining network] y' (p)|i after extraction of the coupled 2-wire line may be ob- 

tained 

[[yMp)]^ |[[i] — [ytp^WpJ'1 [y(p) - [w]"1?] (6.8) 
by solving (6. 4).    Entries of this expression can be written in precise as follows: 
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Y 

56 

o O 

+ W p (kY., - d Y17) f Y., kP     ■    1' 
0 U 12  \   12      Wo(d-k2)   ] 

Y22'  (p)   « Ul - WoP(d Y22. k Y12} / Y22 - P        1 
V v -^    L Wo(d-kZ)Jl 

v^' (PI • v (1-w„P(vu-kvJ{v12--^-?-j 

-oPn.vu-av12,.|v22.   -J*^} 

/ 

Rewrite the given network Cv^P)]! an^ tlie 'emaining network [y1 {p)]J   as 

f Y   '     Y    ' 1 ■•     , 'll       X12 

then Eq.   (6. 8) will go into 

(YI -  r*u Y12 -I > EYt] 

l-Yi2 
Y

22J 

[YMp)]=[[l]-  CY(P)]  [Y(l)}  ^pj-^LYip)]-   [V(l)]p] 

(6.9) 

(6.10) 

(6.11) 

Look back the procedure;    Y(p)    is given, and one extracts a coupled 2-wire line, 

with line constants W given by Eq.   (6. 7),  from the given network, then the network 
parameters   [Y1 (p)] of the remaining network will be given by Eq.   (6.11). 

This is nothing but an extension of the Richards' technique, into coupled Z-wlre 
lines, which originally enables the extraction of unit coaxials from given 2-terminal 

admittances. 

6. 4 Positive realness of  [Y' (p) ] 

Here the problem is whether the remaining parameters [.Y^J would have the 
property of those of networks or not.    That is, it is the significant point whether 
LY'J is a positive real matrix or not.   If this is not confirmed,  one can not be sure 

if he can proceed with the synthesis of the network. 

In order to keep generality, the following term will first be proved. 
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Theorem:   If [Y(p)J  is a positive real matrix, and p, is any positive number, then 

j[Y»J   =  .{flip. . UYWKY^IP]"1 [CY(p)]|   Pl.  ^(pjÖ     pji (6.12) 

is also a positive real matrix. 

This is the general form of Richards' key theorem extended into multiterminal 
networks. But the proof will be carried out for a 4 -terminal network, as an example. 
Write the entries of Eq. (6.12) in precise, 

Y   •   =-l_   [V.   p^p2)   -i**!  <{Pl-P(ZllYll+Z
22

Y22
+2Z12Y12i} 

Z22PlP(YllY22 " Y12 > 
ZllP Y„l 2      2V 

22   " ~T   I122^1  " P ) 
Z11Z22Z122 

| P1 - p (ZUYH+Z^Y^^Z^Y^)! 

(6.13) 

Y    '  = x12 

■ ZllPlP(YllY22-Y12 ) 

Z12P 
12 (P,   -P ) +  ^ 

ZUZ22Z12 
P1-P(ZllY11 + Z22Y22 + 2Z12Y12) 

+   Z12 Plp (YUY22 - Y12
2 ) ] 

where Z' s are the elements of (Yta) 1 " . 

5. 4. 2   Segregation of [[zj 

Segregate [Zj, in the manner that Richards took to proving his theorem on 

t-»'!>-terminal networks by the use of positive realness of functions. The only difference 
is that here matrices are under consideration, rather than functions themselves. 

Let any entry of the matrix [iZJbe represented as: 

z.z(a) + z(b) 

p)PZ-PlZ)            (b)       Pfo^ - P^) 
£.     » —j—2 ,     i.     a—j 2  

p -p1 p - p^ 

z «  Z     (p^ ,    pj   >o 

1 

) 
(6.14) 
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Then   [Z]can be segregated into two parts: 

'z (b>    z  (b) 1 
z11^)    z12(b)| 
^12        ^22    J 

p(pZu.pZu)      p(pZi2 - pjZ^) 

 2 Z       2 2  
P "Pj P -Pi 

p{pz12-p1z12)   p(pz22-p1z22) 
1—z  
p -p, 

"Z—2" 
P -Pi 

P1(pZ11.p1Z11)      p^pZ^-pjZ^)   , 

T. 1' 

P -Pi 

(6.15) 

series If the positive realness of these    [z     J  an^ I ^     j   can be proved,   TZj   , the 
connection of the two,  will also be understood to be positive real. 

5.4.2   Positive realness of [z(a)J   and[z(b)J 

Since  [Z    'J   and [Z     J   are symmetrical matrices,  they can be proved to be 

positive real if the quadratic forms 
1 

Zin (a) 2       (») . 2t t Z    (a) + t  2Z    (a) 

Zin<b) = t,2 Z,^)   + Z,^ Z12(b) + t2
2Z22(b) 

(6.16) 

are positive real functions or any real coefficients (t.   , t,).    First, take the part 

Zin       on the imaginary axis,  it can be transformed as: 

of 

>; Ja) ,; (a) (a) Re Zin,°, (jw )   =    Re (t^ Z11^
,   + 2^2 Z^' + t2    Z (a), 

22 

h   Re ZU(a) + 2tlt2 Re Z12(a) + t22 Re Z22(a) 

ReZ TiT 
u 

'{iL     ReZ^   +ReZ12<a)}2-{(ReZ12(a))2-ReZ1^ReZ22^ 

.(a) Therefore ReZin*     (jw,) can be >0 if 

ReZu
(a) (jWl)    ReZ22

(a) )j ^ - ( ReZ12
(a) (j«)} 2> o 

17) 

(6.18) 

holds.    Put eq.  (6.14) In the above expression, then it becomes 
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Re 
P 

" 2 
pIpZjj-PjZ^ P(PZ2J " PZ22, f p(PZ12 " Pl2^ irPru' c     P(PZ'2.' " PZ22' f D      P{PZ12 " Priz'   S 

2 Z   Re Z Z    '\Re Z Z > 
" Pi P   " Pi I P    " Pi ^ 

Wj2 ReZ11 (j«) -w^ ReZ22 (jWj) |-   - w^ Re^ (Ju^  " -|2 

w,    + 

w 4 -, 

,\-T;2 [ReZu""i) "{ReZi2"tti)f2]J 
'Wl    Pi ' 

(6.19) 

which is > o from the condition that f Zl is a positive real matrix.   Thus it has been 

shown that ReZln1 ' (ju.) >o.    Similarly, as to [Zx 'Jalso, one has 

P1(pZ11 - p1zu)             P1(P222 - Pfzz)         r         Pl(Pz12 -PlZ12^    ll2 

Re  2 2 Re  —^ 2  i Rt  j z    » 
P   - Pl P   ~ Pi \ P   - Pi J 

-p^ReZ^jWj) -p1
2ReZ22(j«1) f-p^ReZ^»«^     ^2 

'   -(«1
Z + p1

Z) -«j2 + P!2) t J) 
4 

'   A ZT- [ReZ   (jw^ReZ^O-j)   - { ReZ^jWj)},    ^    >o (6.20) 
(w1   + P.   ) 

^o that ReZin(b^   (jw^   >o   holds. 

Next, poles of z'    , Z^ ' will be such points that p = + pj or the poles of Z, but 

the point p = p, cannot be a pole because the factor p-p. appears in the denominator 

as well as in the numerator.   Again, since Z is an element of a positive real matrix, 

it has no poles on the right half p-plane.   Therefore Z*a' and Z      are analytical on 

the right half p-plane, and consequently the quadratic forms Zln'a , Zin      are also 

analytical on the right half p-plane.   Suppose Z*a' and Z*     have a pole at a finite point 

p « jw. on the imaginary axis, then the pole will coincide with that of Z, with the per- 

taining residue 2 
1 a (6.21) 

(«i + PiT 

which is positive.    Here a is the residue of Z at the pole p = jUj, and is positive, 

one has 

allall " a122 ^0 (6,22) 
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when either Z.. or Z  . has a pole, or even when Z,.,  Z,, and Z     all have a pole '11 '22 22 12 

(6. 23) 

Therefore the Inequalities 

ReZ^ij«.) •  ReZ^Ottj) - [ReZ^j«.)!] 2>o 

ReZjj'^U«,) ■  ReZ^^lj«^ - fceZ^U»^ 2>o 

always hold, so that residues of Zinta', Zin* '   at their poles are always positive. 

From the above, it was proved that \Z^'\ and [Iz'  ' j »re positive real matrices, 

because Zin      and Zin       satisfy the conditions to be positive real functions.    The nec- 

essary and sufficient conditions,  referred here, that a real rational function W(p) is a 

positive real function are (i) its poles on the imasinary axis are simple and the resid- 

ues are positive,  (ii) Re W (jw) > on the imaginary axis» and is analytical on the right 

half plane. 

5.4-3   Positive realness of [Y'l 

Since [Z-   jhas beeo proved to be positive real» its inverse matrix 

must also be positive real.    Rewrite  I Z     j "   as follows: 

-1 

Pi (P z12 * Pi Z12) 

T 

>UH 

[zH 

pl (p zll- Pl Zll) 
2 

p  - 

1 Pl (p 

2 
Pl 

212- Pi Z12) 
2 

P 
2 

"Pl 

p  - Pl 

Pl (P Z22 ' Pl Z22 
 2 Z  

P    - o. J 

2      2  / 
(P  -Pi )/Pl 

(pZy-pjZjj) {pz^-pfaj - (pz12 - pjZ^) 

1 

[PZ22-PlZ22-(PZ12-PlZ12) 

i -(pz^-pjZ^) pz^pjZjj 

'UZ22'Z12 

Z22 - z12 

&12 "U 

J      + [V  (p)3 
pl 

Alsoi  since the entries o*U(b)] have a zero point at p « oo, [. Z    '_J     has a pole 

(6. 24) 

at 

p a oo.    Let its residue matrix be  I y     ; it belongs to a positive real function: 

(z 22 Pl a22oo) / Pl 

(zll ■ Prhloo > (z22 " Pla22a)) " ^PlW ^    "0 

(zll ' P^Uoo) / Pl 
(ZU " P1*ÜJ   (Z22 * Pfizä* " ^-Pl^oo Z   ">0 (6.25) 
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*iim''7?«»" Yi 
^Pl2 

lloo  22a>   T12aj      , . , .     . »2 
(zU-PlaUaD) {Z22-Pl»22a,) " ^PlW 

Here   aao    denotes residues of    Z     at p ■  oo.    Thus 

^2 ~ Pla22a) «o (6.26) 

"U ■ Pl^oo - o 

hold. 

(z22 " Pla22a>)/Pl 

(6. 25) 

"^lloo 
<211- Pl^loo > (Z22- Pla220o)- 

" Tlo 
(z12" Pl^ao' 

Y 
fzU " Pl*lloo)/Pl .   _   ^ I22a> 

^ll" • PlW (z22 - Pla22a>) " "12 ■ »iW'  " 0 

Y
llooY22ao " Y12a>  * 

>/Pl2 

^   0 

^"Pl^lJ (Z22' •Pla22a>) " {z12-Pla12o0
)fc ' 

^Uoo 
m       ,  , 

VP, 

ZUZ22 
2 

-z12 - pj aUooa22aD"a12a>   - PlZ22(a12oo'Z12a22oo/: B22) 

z22 a22oo a2^ (Z22-Pla22c0
) 

(6. 27) 

The second term in the denominator in the above expression is positive as it is 

the determinant of the residues at the pole of   Z.  and the third -erm is positive owinj 

to the relation (6. 26).    Therefore 

vUoo> L^- 
p1    

Z11Z22'Z12 Pi 

z22 

holds. Similary one has 

^220,   >      ZU    -     - ■——   s 

Y11 (p^     >o (6.28) 

r "   T     Y22(Pl)    >0 (6.29) 
Pi'zllz22-z12 

Separate the pole p ■ oo from[Z* 'J 

Iz""]"1    -   kJpnl^""!-1 (6.30, 
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then TZ J       must be a positive real matrix because it is the remainder of a posi- 

tive real matrix after separating the pole at p = CD. 

From Eq.  (6. 24) and above relations, one has 

[v]-  [zJV   .     {^j-   i[v   P,}}    P 

- itj*]-1* 
l_ 

^lloo-^-     Yll(Pl) Yloo '  p1 hzW ] 
Yl'— - :r izoo    p,   Y12 (pj) . .i_Y

22<Pl) 
ZZao    p. 

As to the entries, one has, from (6- 25).  (6- 28) and (6- 29), 

*lloo "  £" Yll W ^ 

(6. 31) 

YzZoo   'pi  Y^ip^o 

{^llco " ^    Yll<Pl)} { Y22a, "  ^ YzW} -    { Y12oo " p^  Y12<Pl)}: 

lloo    22oo 
2 

l12a> 

(Z11Z22- z12 K^ll-PlW <Z22-Pla22oo) " ^lE-P^lZ«»»   } 
>o 

(6. 32) 

le can see that l|Y  1- —   f Y (p,) M p is a positive real matrix-    It turns out , UM    Pi L    'n'J / F       ^ r    (b., 
'J must npturally be positive real, because it is given as a sum of j! Z   '    J 

Thus one 

that [Y 

{[.
1
'-]-P-I

Y
"

>
I
,
]}I 

One can trace the proof also by using   I Z*a'| . 

Although the explanation has been made on a four terminal network as an example 

one can in general prove the positive realness of (LY'J in case of an n-terminal-pair 

networks, the only difference being the complexity of the computation with the matrix 

n lines and n columns. 

6. 5   Physical meanings 

If one solves Eq. (6.12) with respect to |Y{P)]/, he obtains f Y(p)J = [p [Yip^J ^ 

Pj [Y(P)] ] *•. [pj [1 ] -H   p [ Y(p1)| -
1    Y' (P) ] ^ 

= [L
Y
<PI)] ■* iLtf^M ^O'^IL7^] i'1+r[Y,H X^^J"1 ^l"1^3^ 
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The term [Y^J] "    [Y1 (p)] [Y (pj)] '      can easily be shown to be positive real, 

because |Y(pj)J  and  ^Y1  (p) ] are positive real matrices-    All matrices on the right 

hand side of the above equation are positive real,  so that one can give the network in 

the form Fig.   6- 5(a). 

Also obtain   LZ(p)J , . 

lZ(p)]   =   [[Y^)]   ■^-   CY,(P)]] "1+4[Y<Pl>]    [Y,<P^  [Y(P1)]+Y{p1)  ^.] J    (6.34) 

This may be representec in the network Fig.  6. 5(b). 

It seems as if QY1 (p)] has a degree two highter than that of [ Y(p)J  , from 

Eq.  (6.13), but the numerator and the denominator have a common factor (p-p.)   » which 

can be eliminated«  so that they are of the same degree.    In case of pure reactances« one 

can take off a factor (p if p.)   , and will have a degree two lower. 

As Richards applied his theorem to extract a unit coaxial« the extended theorem 

may be applied to the extraction of a coupled multi-wire line.    That is the case p, = 1« 

as explained in paragraph 6. 3.    But one must pay notice to the restrictions of a coupled 

two-wire line.    The proof«  stated in the preceding paragraph« holds« and the restric- 

tions on  [.Y(l)3 are« from the positive realness« 

Y^l/ >o.     Y22(l) >o,     Y^l) Y22(l) - YJ(1) >O (6. 35) 

whereas one has the restrictions 

1, d > k > o (6. 36) 

if he is going to make the coupled 2-wire line in a shielded 2-wire line.    Expression 

(6. 35) becomes 

W >o«   d>o, d - k2 >o (6.37) o= = = 

One should note that the restrictions (6. 36) are severer than these. 
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CHAPTER 7.     Design of symmetrical networks*     ''    ' 

If one ex'ra'-ts a two-wire line in the Wdy described in the preceding chapter, the 

degree of the network parameters will be lowered by 2 for every one extraction of a 

line.    The remaining network preserves its property as a physical one,  so that one can 

again extract a coupled 2-wire line-    Repeat the process, the degree of the network 

will come down, finally to zero« and the synthesis will be completed-    From this reason, 

the extraction of coupled two-wire lines can be a significant procedure of networks by 

using the procedure along with the methods of synthesis,  say,  extraction of unit coaxials 

or taking out shunt elements. 

This chapter describes the synthesis of symmetrical network. 

7.1.        Extraction of two-wire lines in symmetrical networks- 

Let the network parameters [Y J   be given at first-    If it is symmetrical, one has 

Y    =  Y Jll      JZ2 (7-1) 

Therefore the line constants, of the coupled two-wire line to be extracted, are. with 

the use of Eq.  (6.7), 

W 
Y11(l) 

= zu(i). 

z12(i) 

d = 1, 
Y^d) - 

Y12(l) 

Y12
2(l) 

Y11(l) zuii) 

(7.2) 

The network parameters of the remaining network are, fram Eq.  {6- 9). 

Yll(P) =  Y2Z <P) 

Yll(1"pZ) ' ^ife"    i1-2*«^!!-1^)     -WoP<Yll2-Y122 
_ o 

1 - 2Wop(Y11 - kY12) + Wo
2 (1 - k2) p2 (Y,,2 - Y17

2) 

V <p)= 
Y12(l-p*) ^2- 

n 12 

l-2Wop(Yu-kY12) + Wo
2{l-k2) pl(Y„l - Y,,2) 11 12 

(7-3) 

QY']   i? already proved to he positive real,  so that one can go on the synthesis by re- 

peating the extraction of 2-wire lines- 
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7. 2.        Method of treating the matter in symmetrical lattice netoworks 

When the network is symmetrical, one may represent it in an equivalent symmet- 

rical lattice network, which makes understanding easier and calculation« simpler, than 

to extract a coupled two-wire line as described in the preceding paragraph« 

Let the lattice elements of a symmetrical network be Z   and Z. , they have the 

following relations with network parameters: 

Put p =  1, 

ia(p) = 
.     A (p) -1 

C(p) 

1 

Yu(p) + Y12(p) 

^(p) = =     A(P)+1.      = 

C(p) 

1 

Yuip) - Y12(p) 

za(i) = 1 =   Wo(l-k) 
Yn(l) + Y12(l) 

zb(i) - 1 =    W    (1 + k) 

Y^l) - Y12(l) 

'■ 
(7.4) 

(7.5) 

which yield line parameters: 

wo=-r   { Za(1) + Zb(1)} 

k  = 
Zb(1) - Za<1) 

zb(i) + za(i) 

(7.6) 

Take out a unit coaxial, of characteristic impedance W  (1-k), from Z (p) by Richards' 

process, the remaining two-terminal network Z'   (p) will be 

Z  (p) - p Z  (1) 

a1 V (p) =  Za(1)   ZJ1)   -pZJp)  

1 - Wo(l+k)p(Y11-Y12) 

-nr'wro(l+k)p(Y11.Y12) 
1 -Wo(l.k)p(Y11+Y12) 

1 - 2 WoP(Y11-kY12) + Wo
2(l.k2) P^Y^-Y^2 

1+k    2, l+k_2v 2 ., Yii<1+rnrP)+ Yiz^^) -FÄ - wo(1+k)P<Yii -'12 > 

1  

Y11
, (p)+Y12' (p) 

(7.7) 
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Similarly, extract a unit ccaxial W  (1+k) from Z, (p), then the remainder will be 
O D 

zb(p) - pzba) 
Zb' (p) =  Zb(l) 

zb(i) - pZb(l) 

1 

YU  (P) " Y12, & 

(7.8) 

These values of Z  ' (p) and Z  ' (p) are identical with those element values that constitute 

a symmetrical lattice network representing the remaining network  [Y1 (p)] after the 

extraction of a two-wire line from [ Y(p) ] .    This fact means that the operation of ex- 

tracting a coupled 2-wire Hne (W, d =  1, k) from a symmetrical network [Y(p)]  can be 

replaced by the operation of extracting coaxial elements W  (1-k) and W  (1+k) from the 

elements of the equivalent lattice network- 

It is simpler to treat the matter in a lattice netwcrk and facilitates understanding- 

,   , _. .     (26)(27)(40-43) 7.3. Design examples'     " ' 

The design procedure of symmetrical networks will go on as follows: 

(1) Give network parameters (A,B,C; Y.., Y^; or Z.j,  Z.^) 

(2) Obtain elements Z  ,  Z,  of the equivalent lattice network 

(3) Realize Z   and Z   in bar-type by Richards'  method (Eqs.  (7- 7),  (7. 8). TABLE 7.1) 

(4) Determine the line constants of the coupled two-wire line from the corresponding 

line elements of Z    and Z. .   (Eq.    (7. 6)) 

[Example ij     Design with Q-functions- 

Assume the given conditions that the deviations of input and output terminal resis- 

tances should be within 5% in the range 0 ~ 0. 8207 of the frequency u (u = tan ßl), and 

that the attenuation (ao) should be greater than 4 nepers in the frequency range 1- 2185 

-"• oo.    Here one should take the Q-functions 

Z 

"Tf 
o           /0. 665       p^-l-l. 57        t    ,    6, 

S/-T75T-   P=  ' tanh 
.'l. 57x0.665 p^+0. 637 

from which Z    and Z,   are determined; a o 

Z    =   Z   tanh^=R   PtP^.57)  
1. 57 (pSo. 637) a o Z ,   e^. /_2. 

ZK=Z    coth«    SR0.665-(PV637)<P2^57) 
b   0    x p(pz+l) 
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The bar-type networks will be obtained as shown in Fig.   7. 3, referring to the second 

line of TABLE 7- 1(a) and the third line of TABLE 7.1(b).   That is: 

Wal = ^ Wa2 = 0- Z85 ^ Wa3 =  0* 285 ^ Wa4 ' 0 

Wbl= 1.4R. Wb2 = 1. 355R. Wb3 = 19-15R, Wb4 = 19.15R 

From these values, one can determine the line constants of the coupled 2-wire lines: 

Wol = X (Wal+Wbl) = -r t1 + ^ R = * 2 R 

. Wbl " Wal 1.4-1 „ .,, 

bl        al 

Wo2 = 0. 82R. Wo3 = 9. 72R, Wo4 = 9- 58R 

k2 = 0.652. k3 = 0.97, k4 =1 

In Fig.   7. 3 are shown the network structure and the frequency characteristics of Zn and 
a,    (6   = a   + iß ). 1 o        o     •' o' 

[Example 2 J      A network of Wagner character. 

The effective attenuation a of a network of Wagner character n =  5 is 

« 2a =  1 . p10 

and the network parameters are 

A =  ( 1 + ,/5) p4 +  ( 3 +   v^S) p2 + 1 

B = Rp   {(3 +75 ) p   + ( 1 +/5 )} 

Thus the arms of the equivalent lattice are 

ß 1 + >/?       p 

o 

Za = 

A-l 2 p -1 

1 +V^S"     2i . 

Z        ß —Z p+1 

^b" "~"      "^^ 

p (p   + —j ) 

Represent these into bar-type by TABLE 7.1, one has Z and Z. in Fig. 7.4, and after 

converting the network into coupled line type, he will have the desired one- The struc- 

ture and the characteristics are shown in Fig.  7. 4. 
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Example 3    A network of Tchebycheff characteristic with no attenuation poles. 

The attenuation for n = 5 is given by 

c  aa 1  + ■7-+-2- C08 ( 10 co8'lw ) 

where the maximum attenuation in the pass band is taken to be 3db.    Network 

parameters are obtained as 

A= 9. 1749 p4 + 8.7649 p2 + 1 

C = -  { 32 p4 +   42. 306 p2  + 11. 486 ) 
R 

from which one can determine 

Z   - R °lli£7 P        T   - R   L^lZgp2 * 1 
n ~ ~J   »        ^K ~  K     7  

2. 6533p    +1 D p ( 26. 346 p   + 7. 308) 

One can develop these    Zo and Zb into bar-type ones and deduce the coupled line 

network as shown in Fig.    7. 5,  with R = 1 ohm.    In the figure is also shown its 

characteristic. 

Example 4     Tchebycheff characteristic with attenuation polas. 

Let the maximum attenuation be 0. 5 db in the guaranteed pass band u = 0   0. 8207, 

and   n = 5. Then one has z,i, 
6 ^   1 + .Hp) 0{-P) 

^p) = 10. 512 P(P2^6251)(P
2 4 0.2796)  

(0.6251 p* + 1)   (0. 2796p   + 1) 

which yield 

9. 278 p^-f 8.107 p2 ■!■ 1 
A «      r ■■■ c T- 

0.1748 p^t 0. 90a6 p   + 1 

Q     Rp (5.151p2 + 2. 605) 

0.1748p   + 0. 9046p   + 1 

From these values one can determine: 

5. 151 p 
Z    « ^"7  a      9. 453 (p   + 0. 3516) 

5.151 p2 + 2. 605 
2,   M  — >■   

b       p(9.103p2   + 7.202) 
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The network and its characteristic are shown in Fig.   7. 6 

CHAPTER 8.    Design of antimetrial networks 

The antimetrial networks are the most frequently used ones,  next to symmetri- 

cal ones,  and here will be examined their design procedures. 

8.1       Extraction of coupled two-wire lines in antimetrical networks 

The definition of an antimetrical network is,  in terms of the four-terminal   para» 
2 

meters,   B1C = R    (R is constant).    Rewrite this in Y- parameters,  one obtains 

Y   Y       - Y Ml   22       I12 
AD- 1   =    C 

B B 

1 
(8.1) 

If one extracts a line from a network satisfying this condition,  he has,  from a 

network satisfying this condition,  he has,  from Eqs.   (6. 6) and (6. 7) : 

Wo 

R 

I 

R 

Y22(l) 

= R Y22(1) 

Y11  (1) Y22 (1) - Y12-  (1) Wo (d-K ) 

d = Yll (1) . Y12 ^ 
——— i     K -   
Y22(l) Y„ (1) 

(8.2) 

22 

for line constants.    As for the remaining corcuit,  one has,  from Eq.   (6. 9): 

Y,, ' |p*| --OJ^Jl - p2) -i^-   p { 2 - Wop ( Y11 + dY22 - ZKYlZ )} V <p)---U[Yii(1 

Y,,' (P) 
Wo 

Y22   <1-^) - -T7  P {2   ■ W0P (Y11 + dY22 - ^id (8.3) 

Y^'ip),   -i- 
V 22 Y^d-P2)       W0'C 

12' R2 
p{2.Wop(Y11dY22-2KY12)} 

V= (1+p    ) - Wop (Y.. + Y„ - 2KY1? ) 11        22 '12 

8. 2      The antimetry of [Y •] network 

It is evident from Eq. (7. 3)    that a symmetrical network ( Y   = Y,, ) remains 

symmetrical ( Y      a Y22   )   after an extraction of a coupled two-wire line ( d = 1 ). 
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Also an L - type network ( Y      = Y      .   remains to be an L - type one   ( Y. '« Y., ') 

after an extraction of a coupled two-wire line ( d = x )• 

Let it be examined whether [Y1] remains antimetrical or not   in case of an 
antimetrical network.    Using the values Eq.   ( 8. 3 ),  one has 

Y   ' V     '   - Y 'll   x22        Y12 
,2 

[y 1 -p2 ) - ^|   dp {2 - Wop ( Y11 + dY22 - 2KY12 )}j 

i[Y22 < ^P2 > -^T   P{2 - Wop ( Yll + dY22 - 2XY12 jj 

. [-Yi2 < ^P
2
) -  l£ ^l2" Wop ( Yn + dY22 " Z*u} 

{(   1 + p2 ) - Wop { Yu + dY22 - 2KY12)   } 2 

'{ 1 - P2)2 < YuY22 * YlZ2  ) + 4Wo2 < d - *2 ) P2/R4 

+ ( Y11 + dY22 - 2KY12 )2  {Wo4 ( d - (c2 ) p4 /R4 + Wo2p2 ( 1 -p2)/R2 } 

- ( Y11 + dY22 - 2KYI2 ){4WO3 ( d-*2 ) p3/R4 + 2Wop ( 1 - P
2 )/R2 } 

{( 1 + p2  ) - 2Wop ( 1 + p2 )   { Yn + dY22 - 2XY12 ) + Wo2/0 2( Yu + dY22 - 2KY22  ) } 

2 2 2 
Put here    Y^^ - Y       = 1/R ,  Wo ( d - fc   )/R= R/WO,  then 

( 1- p2)2/R2 + 4P
2/R2 . 2 -5^- p ( 1 + p2 ) ( Y11 + dY22 - 2XY12 ) 

11     ^22 12 

{ 1 + p2 )2 - 2Wop ( 1+p2 ){Yll+ dY22- 2KYi2) + Wo2
p

2 (   Yu +dY22- 2KYI2 )2 

(8.4) 

Thus it is proved that [ Y1 1 is also antimetrical.    that is,  etract a coupled two- 
wire line TY (1)] from an antimetrical network,  then the remaining network [Y1] 
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is also antimetrical. 

One may state in general,  not only in antimetrical networks, that the extrac- 

tion of a coupled 2 - wire line does not change the property of the network but 

preserves it. 

8. 3   Design examples (26) (27) (40~44) 

[Example l]  Wager network,    n a 4 

The effective attenuation is,  for n = 4, 

2 8 
c    = 1 + p 

and the network parameters will be obtained,  with input and output resistances of 

I ohm, 

A = 2p4 + ( 2 + v^ ) p2 + 1 

B = C =72/2 \Ji   ( p2 + 1 ) p 

D= ( 2+7?) p2+ 1 

convert these into Y parameters: 

Y   f r ) - D - ( 2Z^2 ) PZ J- 1 

11
 B   *^/2 +^ ( P2 + 1) p 

Y    (r)-A   - 2pS ( z+yz ) p2+ 1 
22       B   -JiJi +yr(p'i +1) p 

Y12(P)=4- = 
^2/2 +v^ ( p2 + 1 ) p 

Put here p = 1,  then from Eq.   ( 8. 2 ) one obtains 

Wo = Y22 (1) = 1. 2274 

d= Y11 (1)/ Y22 (1)= 0.6882 

K= Y12 (1) / Y22 (1)= 0.1559 

As for the remaining network,  one has,  from Eq.   ( 8. 3 ), 

Y   '   (P)S   2Wo2d2p2 + l . 
11 (v^/Z +>/2"- 2 Wod )p 

Y22« (P) s 
2 Wo2xdp2 + 1  

{JiJi +v^t- 2 Wod) p 
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r12' (p).2Wo <dP  ^ 
{Jljl+Jl - 2 Wod ) p 

which give line constants of the second coup'2d two-wire line by putting   p = 1: 

Wo1 = ¥22'   (1)= 1.1617 

d ' = Yn'  (DZ Y221  (1)«2.26U 

If1   = Y12'   U)/ Y221   (1)= 1.2329 

and the remaining network becomes   Y.j"= Y^"1 = Y.,' ' = 00 . 

Thu« one would obtain the network structure as shown in Fig.    8.1 

Here is aproblem K* >1, and this can not be realized by a 2-wire line over ground, 

owing to the restriction ( 6. 36 ).    The relation   «• > 1 ( or *'  > d'  )    hat a lumped 

equivalent of Brune section and no contrivance has been made to realize itself 

alone by a coupled line over ground; another structure should be taken into consider- 

ation.   First«  take out the shunt capacitance component from   Y,2(p) : 

r22(P, « ZpSu^p2.!    .   ly .^1 . Yc + 
Jlß\Jz ( p2 + i) p     TZJTTTT   Jzji W? ( p^ + i)p " 

and extract a coupled two-wire line from Y.., "i^V ^12'  ^ie ^ne coni,tants w^l be • 

with p = 1, 

Wo= Y22(1>/{Y11{1)Y22(1)-Y12
2(1)} 

=Jz\Jl IJl = ( 1 +,/2) Ijl+Jl 

d    =  Y11 (1) / y22 (1) = (3 +72) / ( 1 +>/2) 

K    =   Y12(l)/y22 (1)= 1/ d+VZ") 

[Y1] of the remaining network becomes CO,  from which one can obtain nothing.    Take 

Z parameters instead,  one has 

,   , ,     ^22 ^P2 + 1 

Z.Jp) 
11 V22-Y122      ^^"P 

Z22(p)sIn _ .UMlZii 
Yny22-Y12 AT^p 
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Z12(P) 
12 

ruy22 - Y12 J**^ 

Z'  of the remaining network * becomes 

Zir   (P> s   Z22,   «PJ S Zi2,   (P, =   2 Z^2* ^P 

which yields,  with   p = 1, 

z« (i) = zljz *Jl 

The network will take the form   Fig.    8. 3 

[Example 2J   Tchebycheff network without attenuation poles. 

Let the permissible amplitude deviation be 3db,  then,  for n = 4,  one has 

2a 
t      = 1 + 1 a    1               \.        -1         2«2 + (^-1 )2 -1   1     +    cos < 4 cos '•   f 

2 2 I ijl. 1 )2 + I J 

The network parameters for   R = 1   will be found: 

A « 7. 8196 p4 + 8. 8241 p2 + 1 

D« 2.3910 p2 + 1 

B = C » p ( 4. 3101 p2 4- 3. 3489 )  

*   Eq.   (6. 9),  in Z parameters,   goes into 

Z^l-p2)- Wop|l -^-J^^d +Z22 + 2XZ12)j 

z^ (P)- 

.-E 
-,«   ,* ~T»    (Z11Z22 " Z12  ) 

Wo(d-ic£) 

1 - {Znd+ Z„ + 2^.,) + 

-    1 

(Z„Z„ - Z,, ) 
Wo 

—^      ,.ir     .22     .„12,      -^—^^     ^ir22     .12 

Z,2{i-p2) - Wodpll E - 
rzz L       Wo(d-»C2) 

^T ^11^22 " ^IZ ' 

{Znd + Z22 + 2KZ12)} j 

(8.5) 

.2i2.(p)^_W2to 
denominator of Z,,' (p) 
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-z12'(p) = 

-Z1?(I-P )-woin> '12 f- Wo(d-K  ) 2r<Zlld+Z22+2«z 

JSL (z„z„-z., ) 
Woid-ic2) "   "      12 

denominator of Z   '   (p) 

Thus Y parameter« are obtained: 

J 
'  (8.5) 

_     D _    2. 3?löjr + 1 
YII(P)S Ts 

p (4. 3101 p2 + 3. 3489) 

v     /~»        A    , 7- 8l96 P    + «• 8241 P   + l Y7?(P) "   -R- « 5  D        p (4. 3101 p^ + 3. 3489) 
22' 

Y12(p) 
p ( 4, 3101 p2 + 3. 3489 ) 

If one would try to extract a coupled two-wire line directly from the network,  he 
will again come to a Brune Section.    Decompase   Y^^fp) : 

Y22{p) » 1. 8026 p  + 
2. 7874 p' + 1 

p (4. 3101 p   + 3. 3489) 
» Yc + Y22 <P) 

Extraction of a coupled two-wire from Y,,, Y,,,  Y,, yields 

Wo« 2.4493,    d= 0. 8953,   K » 0. 2640,    W =1.1492 

The capacitance   Y    is formed by a line of Y   (1) » l/w   « 1. 8026 c c c 

Thus the network may be realized as shown in Fig.  8. 4 

[Example 3]  A Tchebycheff network with attenuation poles. 

Let the maximum attenuation in the guaranteed pass band p = jo   JO. 819036 be 

0. 5 db,  the Y parameters for Tchebycheff character with poles,    n > 4,  will be 

given as follows: 

v   - .     0. 71079 p2 +  0. 21409 Yu(p) = ^ r .  
11 p (1.19230 pz + 0. 68950) 
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Y22(P) 
2p4 + 1. 72762 p2+ 0. 21409 

p (1.19230 p2 + 0. 68950) 

Y12(p) «     0.10883p2 + 0.21409 

p{l. 19230 p2 + 0. 68950) 

Proceeding in a similar way,  as in the previous examples,  one has 

v     ^\ _ i   A77ii-» „ x 0- 57083 P2 + 0- 21409 Y22(p) « 1. 67743 p +  C—j    » Y    + y,,(p) 
Pd. 19230 pS   0.68950) c       22 

Extract a coupled two-wire line from   Y..,  Y,?»  ^12* 

Wo =2. 37592,    d « 1.17831,    /c « 0. 41140 

W' « 1. 00228,   W    s l/l. 67743 
c       ' 

The network structure and the characteristic are shown in Fig.   8. 5 

[Example 4] Case   n = 6 

Y Parameters of a Wagner network,    n e 6,  are ; 

Yjjip) =   7.4 641 p4+ 7.4641   pZ + 1  

p(3. 8637p4 + 9.14 I6p2 + 3. 8637) 

Y22(p) 3 ^^.4 64^^7.4611^1 

Y12(P)- 

denominator of Y..{p) 

denominator of Y-.fp) 

First decompose Y,2(p): 

Y22(P) - 0. 51764 P + 2-7320p4
+5.46pZ + l    . Y    +        (p) 

" denominator of Y c        CC 

The coupled two-wire line to be extracted form Y.,,  y^»  Yi? »h0111«! have,  from 

Eq.   { 6. 7 ), 
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Wo «  —^    - I- 0664 
YUU) y22(i) - Y12

2 (1) 

Yll V                              Y.2 M 
d*— »1.7322,    K* ~  «0.1087 

y22(i) y22(i) 

L Y' J of the remaining network will be 

Y11'  (p) -    0- 9880 P2 * 0- W  . Q. 8880 p ^    0^ P2 ^ 0- 84607 , ^ ^ ^      . 
P P C 

y^, (p),   1. 9039 p2 ^0.84607    ,   L 8039 p +   0.1 p2 ^ 0. 84607 , + 

P P 

v  (p) a    0,4579 f -h 0. 84607 = 0 „^ p + -0.1 p^ 0. 84607 , ^ + ^^ 

P P 

The first terms of the right hand sides of the above expressions make a coupled two- 

wire line opea-circuited at the other end: 

Woe      -S-^       =   1.3977 

Yell*  <1)Yc22,   W-Ycu'  V2 

d    «     Ui »0.4923,     K  =   Ycl2 (1)       »   0.3093 
C C ■ "     ■ "" 

Yc 22'  M Yc22.  (1) 

The second terms   Y .' ,    Y-,' ,    Y,,'    correspond to a coupled two-wire line 

short-circuited at the other end: 

y 22*(1) Wo«—=i    »   2.7955 

V  ^J ^22'  t1» " Viz'  V2 
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= 1, 
y22' a)' 

0. 7886 

The network configuration is depicted in Fig.    8. 6 

Chapter   9 .     Frequency transformation« 

Synthesis of networks with prescribed characteristic functions are chiefly 

treated on symmetrical and antimetrical networks,  so that Chapters 7 and 8 will 

suffice the matter.    Other   networks may also be synthesized but will not be discuss- 

ed here. 

In Chapters 7 and 8,  for the sake of simplicity of investigations,  only L. P. F.' s 

were discussed with cutoff   frequency w . « 1.       Almost the same configurations will 

give L. P. F. ' s with different cutoff   frequencies and also B. £. F.,  as will be examined 

here. 

9> !•    The reference network and frequency transformation. 

The L. P. F.  for Wj a 1 takes the form Fig.  9.1 as described in the examples, Chapters 

7 and 8.    To have the required frequency transformation,  one should use, just as in 

lumped networks. 

in L. P. F. 

in B. E. F. 

P-* PA 

Jw« 

u \ wo p      J 

A= Uy - u.t    wo s yu.w rz 

(9.1) 

Here w..  w, are cutoff frequencies, 

ui » tan (Zwfil/c) (9.2) 

One have to synthesize the network by the use of network parameters apply- 

ing the new frequency variable Eq. (9.1) to those of the reference network 

(L. P. F.  with u. " 1).    One should not apply frequency transformations to each element, 

what could be done in lumped networks.      The frequency   transformation should be 

applied to network parameters.    This is due to the fact that there appear unit coaxials 
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or coupled two-wire line» in cascade,  that are used to construct the network. 

9. 2.    Frequency transformations of low pass filters 

Frequency transformations of low pass filters will be illustrated on Wagner 

networks for example.    The frequency transformation is 

p    —»     p/«i t   u . is   the cutoff frequency 

Symmetrical networks 

Wagner characteristic functions will yield parameters of symmetrical net- 

works as given in   TABLE 9.1 (a).    Obtain the elements Za and Zb of the equivalent 

symmetrical lattice: 
Z A-l Z, A+ 1 /Q ,. a  b  (9.3) 

R C R C 

which are shown in TABLE 9.1 (b).    Apply frequency transformation  p      p/wi to 

these values of the reference network,   TABLE 9.1 (c) will be obtained.    Make bar- 

type networks,  from these values,    by Richards' method (TABLE 7.1),   TABLE 9.1 (d) 

comes out.    Line constants u   . and u. . of each element in the bar-type networks have 

values shown in the TABLE: determine coupled two-wire lines respective w   . and 

«. •• the network will take the form Fig.   9. 2.    &>. and K. in this figure can be obtained 

putting the values of w .    and w. .   given in TABLE   9. 1 (d).    w. and K, are dependent 

on the cutoff frequency   w.»  »" their expressions contain w^    The Wagner attenuation 

characteristics are shown in Fig.  9. 3. 

JAntimetric networks] 

Here the frequency transformation will be applied to Y parameters. 

The   parameters of the reference networks (L. P. F.  with w, « 1) of antimetric 

Wagner characteristics are given as shown in TABLE   9. 2 (a),  and consequently their 

Y parameters are obtained as shown in TABLE 9. 2(b).    An application of the frequency 

transformation  p    p/w, to these parameters gives their values as shown in TABLE 
/_       2 

9. 2 (c).    It is taken that R,  defined by the condition of antimetry B/ C= R   ,  is unity. 

(Case   n « 2) 

From TABLE 9. 2(c), one has,  for n « 2, 

rn '?) - 
I 

Y22(P)«  - 

2 
2*4+1 

wl '  Y^p)'3r p 
wi ^  p 

wl 
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A* for the coupled two-wire line, putting   p » 1, one hai 

2 
S "1 ..^l»)        «1 wo « Y,, (1) ■   ,        d ; 

22 «i VT Y22 (1)      2 + ttl
2 

2 

K a 
Y12(l)       Wl 

y22{i)     2 + Wl
2 

where the relation  d = K requires a double coaxial structure.    As to the remaining 

network, 

V a Y22, - Yu* - «> 

In Z parameters 

V  {0)" Z22,  (0)" Z12,  (0)"® 

Therefore the network structure will be shown in Fig.  9. 4. 

(Case   n « 4) 

From TABLE 9.2(c),  one has,  for   n « 4, 

2 
(2+V2)-B_2   +1 

Y11(p) .    -—^ 1 

+ 1 

Y22<P) 

4 2 
2     -E- +   (2 +^2)   -P-^   + 1 

u. w. 

Sz/iWI   P- (-E_  +1) 
wi   ^ wi 

Y12(p) - 
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Decompose Y,,1 2 

-V + i 
«/2 p v2     uj 

Y^tp)«-^:^       + 

wl    wl 

yz^    "i        JIJZZJ: ^. -E_, + i 

» Y    + y22(p) 

Che line constant of Y .  the shunt capacitance, is 
c 

1 /Z   + vf   , 
c   Yca)     ^      1 

As for the coupled two-wire line, to be extracted from Y.,,  y,,»  Y.,»  one obtains 

y22(i) vT+ «j2 

Wo' Y11a)y22(i) - Y122(I)   " /z +yr Ul 

Y11(l) (2   +V2)  +   W!2 

d ■  —— » 
y220) ^2  +   «/ 

Y12(l)    _    Wl
2 

y22a)     VT+ «j2 

The remaining network is an open-circuited line with 

Wj   (1 + «j   ) 

T2 +^r 

The network structure is shown in Fig.   9. 5. 

The Case   n » 6 may be treated likewise as already shown in Chapter 8 

Ifxample 4j, but will not be cited here to avoi   complecation.    Antimetrical   L. P. F. 

have, in general,    the same form as the reference one»  only the line constants are 

different for different  w,.    Curves of attenuation are shown in Fig.    9. 6 



81 

PIBMRI-1048-62 

9. 3   Frequency tranaformationa of band atop filter«. 

In band atop flltera, one ahould make uae of the frequency transformation 

-1 

-l^^)} 

u)   and w,   are ^e cutoff frequencies.    Here again those of Wagner characters will be 

taken for examples. 

fSymmetrical networks^ 

An application of the above frequency transformation to Z     and Z.  of TABLE 9.1(b) 

gives values shown in TABLE 9. 3(a).    Their bar-type representations,  due to 

TABLE  7. 1,  will be obtained as shown in TABLE 9. 3(b); W  ,    and W ,      will yield 
am 0    9 

coupled two-wire lines as shown in Fig.  9. 7.     Symmetrical B. E. F.  can be obtained 

generally in this form. 

[Äntimetrical networks] 

The matter will be explained on Wagner B. E. F.,  n « 4,  as an example. 

Network parameters of the reference L. P. F.,    n « 4,  are given, from 

TABLE   9.2(b): 

Y   (p) .     (2+^)   P2^ 
11      yz/z +vT (p2 +1) p 

12 r     7 Jijz \JT (pÄ + i) p 

Y22(p) =   -/P   ,      2 + f/-J-1 « Yc + y22(p) 
"     x/zyz+yr (p2 + i)    jijz+ji tf + I)P    

c   22 

The frequency transformation  p—»A p / (p   + W    ) will be applied herein; first 

one has: 

YC(P)- |L=-   ^P   z c      JTQf    (p2 + wo
z) 
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This consists of two lines W  . and W  ,,  of which 
cl c2 

YJ1) 1     ^    v^ A 
Wcl  v^+^a+O 

Applying Richards' procedure to Y  (p): 

1 Yc(p)   -   p/Wcl p 
Y   ' (P) 

W , l/W   .  - pY   (p) W   .« cl '     cl     r   c r cl   c 

W  , w 

y/Z    A 

c2 VcluoZ       J1  ^ wo2 * + w
0

2) 

Rewrite the Y parameters in Z parameters: 

z,»- '^EJJL.   z17(p). ^F' jrw '12' /T+TT] 

z"^ ^r1 

Apply the frequency transformation: 

ZuCp) 

, 2 x      2.2  .   /=- A 2    2 
(P    + w

0   )     +v2    ^     P 
■ I — 

z22{p)» 
(P2 + «0

2)2  +   (2 +72) A 2 p2 

/2 +/^~ A p (p2   +   w„2) 

z12(p). 

/ 2 x      2.2 
(P   + «„ ) 

'Z+Jl  Ap (p   + w0 ) 

Put  p « 1» and obtain the coupled two-wire line to be extracted: 
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{! + «  2)2  +VT A2 

Wo-zii(1>-     TrniT:  .. .     2. 

Wod-Z22{l) 

(1 + «o
2)2 + (2 +^) A2 

i i 

/2+/TA(1 + «  2) 

W ox ■ Z12(1)S   Lj^o u      /2+/r A 

The remaining part of the network has parameters,  by Eq.   (8. 5), 

"tfT. 1)P
4A2 (1 + Wo

2) +{/2 A4
Wo

2 + A2 (I + Wo
2)   {2Wo

4 +4" a)o
2) 

+ Wo
4 (1 + «o

2)3}   p2 + a,o
6 (1 + Wo

2) { A2 + (1 + Wo
2) 

o 

2.2 

Zn' (P) - 

Z22'(P) 

yZ+/2   «0
2 (1 + «0

2) Ap { (1 + «o
2) p2 + wo

2 (1 + wo
2) + A2 wo

2 } 

[(1 + /2) A2 (1 + Wo
2) p4 + {(2 + /2) A4

Wo
2 + A2 (1 + <-0

2){2«0
4 +   (/? + 2) Wo

2} 

L^ a + <oo
2)3] p2 ^0

6 a ^ o»0
2) { A2

 MI +o»0
2)2} , 

denominator of Z,,! (p) 

r    .2 

hz M 

A2 (1 + Wo
2) p4 +{A2 (1 + Wo

2)   2Wo
4 + Uo

4  (1 + Wo
2)3}p2' 

+ UO
6{I+«0

2){A2+ U + «0
2)2} 

denominator of Z,,1 (p) 

Consequently the line constants of the coupled line to be extracted are 

w<sz11
,a)= 

w»d,«z22
,(i)» 

V^A2{Wo
2A2 + (1 + Wo

2) 2}+ (1 + Wo
2) A2 (Wo

6 + 2Wo
4 - 1) + Wo

4 { I + Wo
2)4 

yr+^i Uo
2 (i+Wo

2) A{(I+WO
2

)
2
+A

2
 WO

2
} 

(2+/2)A2{wo
2A2 + (1 + «0

2)2}+ (1 + «0
2)A2 {Wo

6 + 2Wo
4-l) + w^ll+w^)* 

denominator of W' 
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W«' « - z'12(i)- 
(1 + «o

2)   A2 (wo
6 + 2«o

4 - 1) + «o
4 (1 + w  2)4 

denominator of W 

The remainder   Z"  (p) is 

A4 + A2   (1 + u  2)3 + w  2 (1 + w  2)4 

Z,-  (p)" 
/Z   +/2   w 4(1 + «  2) A3 { A* + 2A2  (I + «  2)2 + (I + w  2)3 (1 + « 4)} 

(1 + «O
2){A4

WO
2 + A2 (1 + Wo

2) «0
2 (1 + 2wo

2) + 1 + Wo
4 (1 + w^p^A^-Hl+w^J2} 

p{wo
2A2   +{l+Uo

2)2} 

ZZZ-  <P) "   - Z12"  W 

The coupled two-wire line to be extracted next   has 

w" - z11« a) 

{ A4 + A2(l + Wo
2)3 + «0

2)4}[a + «0
2){A4a,o

2(I + Wo
2) (1 + 2u,o

2) 

+ -0
4(1 + «0

2)3 + l} + { A2«/ + (1 + «o
Z)2}] 

■ ""■   

/2+y2"Wo
4(l + «0

2)A3{A4 + 2A2(l+u
2)2+(H.Wo

2)3   (1+Wo
2+ (0o

4)} {«-/A2 + {l+«oV 

d" ■ «■ « 1 

The last element is,  by Richards'  procedure, 

Wm    =    W"« o 

Thus B. E. F.,    n = 4, has the structure Fig.  9. 9. 
One can go on the same way for   n » 6,  but will be omitted here. 

[Case   ui    ■ ll l- o      J 

The frequency transformation that has been used in band stop filters is 

wo /    P        .      Wo    M"1 o 

A KT:' 
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where A« <•>-,- w,»    w      « u,«,. In case u    = 1, one has 

It-M"' A(p + —) 
P 

-1 
(fa>2  - «■>]) P      „     1 - wj ^^-      ^     ._ ______ 

1+p 
'1 1 + P 

Put 

p « j tan ß 1, „j = tan ß^ 

then 

I - tan2 ß^ j tan ßi 
= j 

tanZßi 

tan ßji I + (j tan ßi)2 tan Zßji 

Thia value will be represented as p' /<•»,' ■ if one put j tan 2ßi = p', tan 2ß i« w,', 

that is of the same for as p/w, of the frequency variable of L. P. F.   The    only 

difference is that the length of the elements are twice as long (2i).    Thus one can 

treat a B. E. F.   as an L. P. F.  when w    »1. o 

9.4   Numerical examples of line constants. 

It should be examined what values of line constants will come out constituting net- 

works designed by the method above,  on an example of    L. P. F.,    n « 5. 

The line constants of L. P. F.  of Wagner character n s 5,  as given by TABLE 9.1(d) 

and Fig.  9. 2,  are 

W. _1_ 

2 

-j- "i    *i("i+  1— 

l   +   w. I    + —    «. 
2 l 

W- 

r i+yr /     ZA    l+v^Wl + ^S       4. ^ ,     2.    l+^ 

irx      Z^ l+v^ (,,       1+/5"       2\ 

W 3"    7-11-1 w,< u,'    + 
1+   5 

Uj2 + 1 
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«- l 

/   2.     1+/5 

1 1     2 Wj , + l+A        2 
2    -i 

+/5 <•>, 

1+ w. 

2W. 

/    2      l+^\ /l+A       4 ,     2     ,     l+/5\     1+/5 
1 t I ■> 

1+/5 -.(-^"■O «j   (1+  Wj    ) 

«3»1 

Fig.   9.10 showa the variations of these values with respect to u..    One should notice 

that the characteristic impedance of a shielded two-wire line can be made easily in 

the range front 10 to 200 ohms,   but very difficult to be below or above the range. 

Assume the nominal impedance R,  of the filters cited in the examples,  be 50 ohms, 

then the range W/R « 0. 2','4 is realizable without difficulty; this corresponds to 

tan'   «. » 21-« 53     from Fig.   9.10.    If the given requirements go outside the above 

range,  one cannot make line elements owing to the need of too thick or too thin 

conductors.    Therefore it is necessary to examine the numerical values of the char- 

acteristic impedances in the actual design of filters; there may occur some cases 

where one can not build a network,  even though the design may be theoretically 

possible.    In this sense,  one should consider several network configurations of the 

same characteristic,   compare line constants and   structures,   and choose the best 

fit one for the purpose. 

Fig.   9.11 and Fig.   9.12 show networks with the same characteristics as that of 

Fig.   9.10,   but with different configurations.    The network Fig.   9.11 is a parallel 

connection of two coupled two-wire lines which represent the first and second terms 

of the partial fraction expansions: 

R 

Za d+V?)^ 1 + /5" 

'1 
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2p     x "I 
Zb        (1+/5)«, 1+   14/5    p 2 

wl 

given from TABLE    9.1(c).    In the network Fig.  9.11, the range of easy building im 

tan     w , z 24   60 ,   being   wider than the preceding example. 

The   network Fig.   9.12 ia the one that realizes the second terms of the above in 

a 3-wire line structure; here the range is tan     u. = 24   68  ,  being even broader than 

the preceding ones. 

As seen from the three examples cited, the range of practical realizability differs 

with the structure adopted, so that a designer should take various network structures 

into consideration. 

Those with bandwidths especially narrow or wide can be made rather simply by 

other   design procedures,  as shown in Chapter 5. 

9. 5    Additional remarks 

As described above,   LPF and BEF have been shown to be deduceable easily from 

reference L. P. F.   by frequency transformations.    The problem,  whether H. P. F. 

and B. P. F.  can or cannot be deduced in the same manner,  is difficult,  and is left 

open to the future.    The first point of the problem is in obtaining a series capacitance, 

which will need the use of a three-wire line (for example,  the network TABLE 4. 3). 

The next is that a negative coupling coefficient would appear (if one executes the 

extraction of two-wire lines in a simple manner),  which cannot be realized by a 

two-wire line over the ground (including 2-core cables),   and perhaps lines of more 

wire or 4-wire lines without ground will be needed.    This situation is very trouble- 

some from practical point of view,  and will not be attacked any further.    The author 

has his expectations on the ladder networks,   Chapter 4 and narrow band filters, 

Chapter 5. 

Thus one will notice that the design procedure based on the extraction of coupled 

two-wire '.ines is not almighty,   but is only a means of network synthesis.    The proof 

was ma e in general in Chapter 6,    but if the line ia restricted to be a coupled two- 

wire line over ground,  the necessary condition of realizability is determined by the 

inequality (6. 36).    This can be understood because the coupled two-wire line is a net- 

work with a common return.    One can synthesize at least 4 kinds of networks for one 

and the same characteristic in lumped networks.    In coupled line networks,  however, 

one can have only two variations in most cases.    For example take the case of 
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deaigning a ■ymmetrical netowrk as in Chapter 7.    If the grade of Z. is less than 
that of Z ,  one can not realise the network unless he takes degenerate elements. 

One may have other restrications or disadvantages,  but the proposal will be estimated 
in its value as presenting a method. 
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CHAPTER 10-    Experimental examples 

This chapter collects experiments made on coupled line type filters- The aims 

of the experiments are: 

(1) To check the principle of designing coupled line type filters, if it is correct or not- 

(2) To examine whether various network connections (compositing, duplexing, multi- 

terminal connections, etc.),  carried out in lumped networks, is also valin or not in 

distributed networks. 

(3) Relations between line constants and line construction- 

(4) The effect of line resistances to network characteristics. 

(5) Problem of combinations with lumped elements. 

Here are presented 6 experimental examples: 

10-1-    Band stop filter:   This represents " simple networks made of coupled two- 

wire lines" .  and assures that the analysis of Chap.  2 is not mistaken.    Also the effect 

of line resistance is examined in case of a narrow band. 

10-2-    Capacitance coupled narrow bandpass filter:   This examines the analysis 

of " simple symmetrical networks made of 3-wire lines"   Chap-   3, and checks also the 

"narrow band filters" ,  Chap-   5.    There are descriptions on line resistances, dimen- 

sions of line structure,  and temperature dependence. 

10- 3.    Two frequency separator:  It is shown that, with the use of the above two 

networks, the numerical results calculated in the same manner are also valid for 6- 

terminal connections- 

10-4-    Inductance coupled bandpass filter:   This is an example of Chap-   3 and 

Chap-   5, just as in 10- 2, but hw.-e the point of significance is in the composite connec- 

tion, and the combination with a lumped capacitance element- 

10- 5.    Antimetrical narrow bandpass filter:   This is an example of Chap.   5, 

antimetrical (special) networks- 

10- 6- Wagner lowpass filters: These represent the design procedures with the 

extraction of coupled two-wire lines. Chap- 6-9. and experiments are made on grades 

n =   3 and 5. 

10.1   Bandstop filter (l8' 

The top network of TABLE 2-12 is a simplest bandstop filter.    It is easy to make 

the pass band narrower, and is useful to suppress the transmission of a particular 

single frequency- 
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(Image parameter«)   - Let 

». = 1 / «-1, «    = 1 

With theae values, and from TABLE 2.12, one has the image parameters 

6 
Qwct 

(10.1) 

ol        o 
W-l (M    -1) 

f~l        2W   2 , /        T 

r~z~ 
z , = w   — 

o2 o w TT;—r 

tanh 6 

O    ,/       2 
/W    -   1/ M    , 

«    j      / '       -1 

n/ "2 T 

V 

(10- 2) 

where, from the given conditions, 

«-1 = VI - k2,    W = W    (1-k2) o 
(10. 3) 

Specify W    and w  ., then the line constants W  , k and W will be determined from the 

above three equations.    Fig.  10.1 shows the frequency characteristics of its image 

parameters- 

(Effective attenuation)   Let the input and output terminating resistances be R, then the 

effective attenuation a io given from 

e2d=lH. 

Putting the relations n 
-K{<A D) 2       P CR) :} 

A.    /^     cosheo.   Pyzolzo2 8inhec 

oc 

c = 
V    ol   o2 

sinh 8  , D = o 

J02 cos h e 

.V^oi 

(10. 4) 

(10. 5) 

into Eq.   (10.4), one obtains 

e2a=lt_l/    Pol cosh     6 
z-    vVzol 
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'VWoZ 
Z .Z  , 

ol  o2 

1    . «4(W-l
2-l 2 «2{(«2-l) - (-^-)2(«2-l/«_1

2)}  2 1 
1 4 ~*~ 1 4.  2 ..2.   2  -       *    1      \ L«      (« -1) («     1) „2      ,,2 J 

(-^r-)      (W    -1)     (U    <H-1) 
(10. 6) 

o 

Assume here 

R / Wo = 1 (10. 7) 

then the above expression reduces to 

e2a=l+l w2(w-l2-l)Z(M
2    M-l2) (10  8) 

4    2     2    2 

(Equivalent network)   The equivalent network has the form of a single phase line of 

characteristic impedai.ce W    with a resonant circuit in shunt at the input terminals.    As 

a specific feature of the coupled line type network, the shunt impedance has k   in its 

denominator,  and grows larger with smaller k-    The cutoff frequency w-1 -y/l-lK.   will 

in the meanwhile, draw nearer to 1, and the passband will be narrower.    If one builds 

up the network, for the same requirements,  only with coaxial lines« the bandwidth 
2 cannot be made so narrow, because only up to 200 ohms of 2W    (1-k ) is practicable as 

the shunt line-    This corresponds to k down to 0- 6-    In the coupled line type, k may be 

made almost zero,  so that it is advantageous for narrower bands.    (Effect of line resis- 

tances)   If the line elements have resistances, the characteristics will be affected, the 

most at the attenuation pole.    As seen from the equivalent network, the shunt impedance 

at the input terminal will go down to zero at the attenuation po)e and the transmission 

zero occurs, but if some resistance exists, the impedance cannot go perfectly to zero, 

only its reactance part can be zero, leaving nome resistance part.    In the state of Fig. 

10. 3, the output will be 

P   -   EZ 

W  (2^Wo) i 

Y 
whereas the output for a matched load would be 

Po =  E2/4   Wo (10-10) 

Hence the attenuation is given by 

i H - w 
o 

p w 
= 10 log10   -£-   = 10 log10   (1* -^2- (10.11) 
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The shunt impedance is 

wo(1;k2)   (jw3^, ao.12) 
Is 

Replace j« by p, and further. 

p = tanh yt    =    tanh (a1     jß)l 

a*  is the attenuation constant of the line.    If this is small, then 

tanh a' I     j tan ßl ^     o" I H- j tan ßl p r    1    -    *  
1 •«- tanh a' I j tan ßl 1 + a| j tan ßl 

^(a'l    jw)   a-Q'lj«)   S      '1(1    w2)*j« (10.13) 

Use this value instead of jw in £q.  (10.12), then the shunt impedance will be 

wo(1-k2)   r       2 i , a |„...,       ..^   .  ,_. i , (10.14) (a'1(1      «2)-+j«  y-J \ 
I a'i  (1    u)       jw J kZ I a'i (1    w")       jw 

Put herein w = w    =1, the frequency of attenuation pole, then the resistance part y 

becomes 

Wft (Uk2) «  / 
Y   =      2_  4 a'I   = Wo   i-j     4a,< (10-15) 

k 0      l-w_i 

This value of y becomes larger according as Q* is the larger and 1-w  ,    io the smaller 

(the passband is narrower). 

a' depends upon the dimensions, structure and materials of the line;   suppose 

the line is of a coaxial structure, and the loss is due only to resistance dissipation, 

then a*  may be approximately obtained from the formula: 

a'    = 1 fo<Mc)     /     1 2      _       1 

V"2- '      J ff    Ot 

/    J_ j 1 2     V 

I AT     ~ir^./rz     ^TJ 
otxr" 

I    2 D    /arr 2d, /?;      J 

f   (MC) 
0 1 ^ * I (1o.i6) 

436 log 10 (D/d^ t    ZD^ Zd^ 

where g. and g^ are the conductivities of the outer and the inner conductors, D and d. 

are the yadii of the outer and the inner conductors.    Lastly, one has 

W w = w      =   20 log in   (1     1 " M " V        —  (10.17) 
o 0 10 I o^i« « .x 8 a'f 
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(Design example)   The requirements on design are taken to be: center frequency io* 

184 Mc,  cutoff frequency f. s  182. 8 Mc, nominal impedance r = W    «57 ohmSi atten- 

uation peak (a) (i)  = u    > 20 dB- 

From 
2irfo w    = tan — o c 

t   =   1 

one has the length of the elements 

-1 I = 
2irfo 

tan 3 x 10 10 x 

2 « x 184 x 10 y^ =  2.4 cm 

The values of w at the cutoffs are 

-1 
,     .     2 ir x 182. 8 x 10 ,,,  „   ^ n aa tanl^ jg     x20.4   M   =    0.99 

3 xlO 

w, = 1/ w -1 =  1.01 

Consequently,  from Eq-   (10. 3) 

k =  y/l - w_1
Z   =  0.1411 

The values W    and k may be expressed!  in terms of the geometrical dimensions of 

the 2-core cable, as follows: 

W0    =    138 1oglo(D/d1) 

k= log^- 

d2 = 
D2-h2 

1 

(10.18) 

where the coupling between the two conductors is assumed to be small-    Put the values 

of W    and k, already determined,  into these relations, one obtains 

D/d   =  2. 59,  D/h =  1. 14,  D/d2 =  14. 3 

Let the outer conductor be of brass and the inner of copper. 

7 7 
0-,=  1,5x10    v/m,    (r2=  6. OKIO      v/m 

then 2D > 38 mm in order to meet ja 

(10.19) 

>20dB. 

Fig.  10. 5 shows the network structure made for trial.    For the so made network, 

it is estimated that 
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a1  =  7. 8 x 10"4 nep/m 

a   w =  wo ~  -3. 8 dB 

Fig.  10. 6 shows the measured and the calculated values of a. 

10- 2 Capacitance-coupled narrow bandpass filters. 

The networks in Paragraph 3.10 and Fig.   5. 8 become bandpass filters of capacit- 

ance -coupled type.    They are suited for narrow bands, and will be examined in details. 

(Expressions of the characteristics) Those values may be used that are given in 3.10, 

but the case d,2= 1 will be considered in particular.    Putting 

[lo] = o. V2/.I2= Wp 

into equations (1.13) of a multi-wire line, one has 

[V]=    [Vj   cosßl 

which yields 

Define the characteristic impedance [W    as: 

M w n i 
k,    kj        I 

(10. 20) 

(10. 21) 

(10. 22) 

(10. 23) 

then Za and Zb of the equivalent lattice are, from Eq.  (3. 5), 

vrv3 i 
a 

h'h 
V1^V3 W 

=   w 
11 

^^-zkpt W (l#-k2)p' 

(W^fWp2)? 

(10. 24) 

Put,  for simplicity, 

W   =    W 11 
(10. 25) 

and obtain the image parameters: 
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z  = ITTTT, o ^   a   b 
\JX w„.yi-k* 

tanh- 

95 

P'       (1- 
Jkl 

1    k. 

7~r 

The cutoff frequencies W. and W    are determined from these equations, 

(10. 26} 

2 2kl 

1+k. 
.    w2= 1 (10. 27) 

The effective attenuation is given, with the condition of symmetry in Eq.   (10. 4), 

2a 
1- -^ -l-CR)2 (10. 28) 

Substitute herein 

B = 
2Z  Z. a   b 

Z.   - Z b        a 

C   = 
Z,   - Z b        a 

then one obtains 

(10. 29) 

2d        .Jab 
c      =1 

2        2 

2   -^1 
f   Z  Z  -R V -I      a   b ] I (Z -Z )R J , 

r 5- 4    r      R'" 1    2       2k,Z 

R2p{k2p'   *   ^Z-\')} 

If one takes, as the value o" R, 

T R = W11/ 1- k. 

2 

(10. 30) 

(10. 31) 

then he has 
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2a 
l-(l-k2    ) 

r 4 M 
2v 

- 2p{k2p2 fe-^l 
(10. 32) 

From this equation, the frequency W   ,  at which Q =   o.  is obtained 

W 
1     k. 

(10. 33) 

The frequency W    , of o = oo, is given by 

" z ^ W =    1 -T^  
CO k. 

(10. 34) 

(Approximate equations near the center frequency) 

In case of a very narrow filter, the cutoff frequencies w., w    and the center 

frequency are all very near to 1.  so that k, must be very small: 

1 ** kl (10. 35) 

In order that the attenuation p'-1e W     does not come close to the center frequency, 

k.    / k2 should have an adequate magnitude-    Therefore it is necessary that 

1 »k. 

Consider a frequency 

w =  1 Au 

where A w is very small, of the order of k.    or k,. 

Here one has 

p = j   (1    Aw ) , p2 =    - ( 1   Aw )2 i    - ( 1   2 Aw ) 

with which the equations may be rewritten. 

Eq.  (10. 26) becomes  

W„     /Aw    k,2 

Z    = 
o J 

11 vl 
6 

A w 

and (10- 32) becomes 

v 2a   =    1    +   ( 
c 

V 2 Aw     2 

-7 ) 

Aw 

>w   k. 

(10. 36) 

(10. 37) 

(10.38) 

(10. 39) 

(10. 40) 
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The values ol Aw corresponding to the cutoff and center frequencies are 

2 2 Aw. =   - k.   ,  Aw2 =  o. Aw      -  - lo  /2 

so that the bandwidth is 

(10. 41) 

Aw- - Aw . =  k. (10. 42) 

and the width from the center frequency to the cutoff frequencies are 

2 2 
Aw, - Aw    =  k   /2,    Aw    - Aw. = k.  /Z 

2 o        1 o I      ~  ' 

The bandwidth may be considered also as   _+   k  /2. 

(10-43) 

Bring the origin of the frequency to the center frequency» and put 
2 

2 V 
Aw'  =   Aw+ kj /2,  Aw'/ -j- = ß 

then one has 

Z   =    W.. o 11 

tanh 

A w'     k^/T 

Aw'  - k^/2 

Aw'   -k^/2 

Aw'     k^/2 

W ß    1 
11 

a - i 

n    i 

n - i 

/ 

2a = i    ( A
2

M'   ) =   i + n2 

(10. 44) 

(10. 45) 

k^/2 

These have the forms of Q'  functions. 

Fig.  10. 8 and 10. 9 show the characteristics with respect to ß. 

(Effect of line resistance)   In order to examine the effect of line resistance on the 

network characteristics« let the propagation constant be y. = a{ ■* jß' an^ make 

distinctions of the lines, then one can rewrite Eq.   (10. 22) as 

N  =   M  [hC0thV]   ' V2=  -I2W11cothV 

and consequently Z   and Z,   becomes 

(10. 46) 
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Za = Wll   (1 " k2 ) coth Vj' 

Zb r Wll (1    k2 '   COth V 
W    2^ coth 2Y2I[ 

coth Yi' + tanh y-l 
(10. 47) 

Here it is taken y. - •y, because the circuit is symmetrical.    Substitute these values 

in Eq.  (10. 30), the effective attenuation will be 

7«                        z    ZK - R 

c
2a =  1 + N   (      a    b ) 

R (Zb - Za) 

2kl 2 
2 (coth Yi'-tanh Y,') (coth Y2'-tanh Y,') "VXrr coth ^ 

=  1* N ; Vl-k," coth Y \ 
i ■ 2 2 ^ V 2k2coth Y.I (coth Y2' ♦ tanh Y20 -21^   coth   y^ \ (10.48) 

>/ 

where N is the symbol of Norm« meaning the square of the magnitude inside the 

parenthesis.    The value herein is taken that of Eq.   (10. 31). 

Expand tanh y' and coth yi and neglect (a11)    and higher terms. 

»    v /„t..    AX»          tanh q'f -f j tan ßf tanh (a'*   jP)l  =  , :^—*  
1 "   tanh a'I. j tan 

.S    a'i^^ P 
tan ßl H-a'l p 

=   {a'«+p)   U-a'^p) =  p +a'l (1-p') 

coth (a'+jß|) 1     ~      H-a'fp 

tanh (a'* jß) I a'f+p 

S    (Ifo'lp)   i_ (1-a'i J-)  'S   J-  ,+  a'l   -^L 
P r r p 

i f 2 n2 

coth yi     tanh y£   =    p    —   - a« i   ^P T1'. 
K P 

coth yi - tai •• Y'    =  P + o' I   £• -1 

coth 2
Y/     =     -V +   2a,l P -1 

T  
? 

(10. 49) 

Coifine the examination only around the center frequency, then one may use Eq. 

(10- 37),  so that 
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1* 1 - (1+2   A«)     ~ 

J-LJL 
P 

_1 

P 

j(UÄ« 

l+( 1 + 2 Aw) 
j{l + A«) 

1 
U2 A« 

j 2 Aw 

Z 
J 

-   (1- Z Aw) 

(10. 50) 

With these values, one has 

coth -y I ♦ tanh "yl    =      jZAw + 4a, i 

coth •yl - tanh YI    =    -jZ   -   40*I    Aw    "?    -jZ 

( 1 - 2 Aw )   - 4 a'l    (l+2Aw)^ 

(10. 51) 

coth   Y * = 

Substitute these relations in Eq-   (10- 48), and making use of the condition 1» kZ, one 

will finally obtain 

^ 

<U'l* 
N^ ,A   l        -JMJZ  Aw+4a'i)-. 1 (-1)      ^ 

V J        2k24—^jZAw     4Q,
2i) -Z^C-l) / 

lf N/   4Aw - j BaZ' f+Zkl2 N 

^ 2k    (j2 Aw+ 4 a' I )+j ZV*   J 

1-H N 

1 + 

i+n 

2 A w v k. j4a  < 2    t 

Au +- 

jk. 

^TT 
4 a Z'i 

4 a 2/ (10. 52) 
Aw 1 

The third term of this equation is due to the line resistance,  and is related to a2'  as 

well as to Aw 1.    Therefore this term grows larger as the los s of the second (reson- 

ant) wire is larger,  or as Aw 1 'bandwidth) is smaller; even at the center frequency, 

a certain loss occurs 

Z [H = i+i-liilL, 
w =  w Aw 1 (10. 53) 
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'Trial construction and experiment a) 

The given conditions for the design are: 

(1) center frequency f :   150 MC 

(2) nominal impedance R:   75 ohms 

(3) bandwidth f2 - f^ +   45 kc 

Front the condition (1) of the center frequency, one has, from Eq-   (10- 37) and 

(10-41). 

w,  --  tan (2irf f/c) =  1+Aw     =  I - vJ" /Z= \ 

and consequently the length of the elements is determined: 

< C .-1~ C,-l C1T i = T—j—     tan       w    =    -m—7  tan =    -*—7—    -3- Zirt o Zirf Zirf 4 
o 00 

.10 3 v 10 ,, 
 r—      =     25     cm 
8 x 150 x 10 

As to the condition (2), one has,  from Eq-   (10. 31), 

R =  W11 /l-k2    = W11 =  75 ohms 

The condition (3) will now be taken into consideration»   Eq.   (10. 42) may be rewritten: 

Aw^-^WjS  ( 1 +A«2 ) -(I •♦• Aw. ) =  «2-«. 

2ir f_                            2ir f. , 
tan     / - tan    I    =  k. vl 

On the other hand 

w   =  1 + A   w. 
1 1 

2irf. 2irf       f. f   . . f. 1       . , o 1 ,     ~    , IT o+A   1       , = tan I     =    tan  -7— I   -   tan  —3     » 1 c c f 4 f o o 
Af. .    Af; ir     ^      IT 1 i A f       1 

1. tan- 
1    , r 

A f. tan—7-    tan -T— -i  1 + -r- *■ 4 4      in       ^ 4   Ii .        IT    , ,           1     . 4 *      ^o       ^ =   tan  -3- { 1    -7 )   - 
o Af. Af. 

1 - tan ^tan ^-^j- 1 -  -^ ■-j— 
o o 

Af. ,2 Af., 
Sd+.jLjjL)      = n-J-r- (10'54) 
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From these relations, one obtains 

in which the bandwidth Afp - Af,   =    2 x 45 kc>    Thus k, is determined from 

,2         »         2 x 45 x 103 i       ,rt -4 k.    = r    = 3 » 10 
1 Z 150 x 106 

Since it is assumed that k-^ 0 in the 3-wire line, the structure Fig.  10.11 (a) will 

be adopted, which would easily have very small ky-    On the grounds that k7*= 0« one 

may compute k. from the two-wire line in the figure, with the use of Eq-  (10.18), re- 

sulting in 

d2 / D = 0. 0102, h / D = 0 963, d1 / D = 0. 2865 

Take 

D =  150 mm 

Then the other dimtnsions should be 

d, =  42. 98 mm, h = 144. 36 mm, d2 =  3.174 mm 

As to the loss at the center frequency, one has, from Eqs.   (10.16) and (10.19), 

a2,  =  7. 97 x 10 "4 

Putting this value into Eq.   (10. 53),   H w  = w    i8 calculated to be 
o 

■LaJ   w =  w    =  2. 80 dB 
o 

The filter was constructed; Fig. 10-12 shows the structure, Fig.  10- 13 the insertion 

loss characteristic,  Fig.  10.14 the effect of the fine ac justing screw to the center fre- 

quency.  Fig-  10.15 the change of the center frequency due to the temperature of the 

whole network. 

The caluclated and the measured values are in good accord,  suggesting the correct- 

ness of the principle of the design. 

10. 3   A two-frequency wave separator 

A wave separator was constructed with two narrow B-P. F.  of the preceding para- 

graph.    This experiment has been made to show that it is possible to calculate 6-term- 

inal networks in distributed elements just as in lumped networks. 
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(Principle)   Prepare two filters of the preceding paragraph! one with the center fre- 

quency at f., and the other at f?, and connect them in parallel at the input'    The output 

terminals are separated.   Two frequencies f. and f. coming to the input simultaneously 

may be taken out separately from the output terminals.    An additional shunt susceptance 

is connected at the input terminal so that one filter does not disturb the other»   This 

idea resembles that of the wave separator with x-termination. 

(6-terminal connection)  Refer to Fig.  10.16.    The two component networks have Y 

parameters: 

N 
Yii' 

LY12 

12 

Y22J 

W 
fY 11« 

13 

[13 

33 
(10. 55) 

Connect them in parallel at the input terminals.    Then the resulting 6-terminal network 

will have the Y parameters 

DO 

^r+ Yir  Yi2  Yi3 

12 

13 

Y22 0 

33  . 

(10. 56) 

Connect a correcting admittance Y    in parallel to the input terminals of this network, 

then the relation between the voltages and the currents will be 

h Y0   * Ylll    + Ylin Y12 Y13 

h s Y12 Y22 0 

[h _ Y13 0 Y33 

(10. 57) 

Connect a conductance G to each of the output terminals 2-2' and 3-3' , one has 

- E2G = I2,    - E3G = I3 (10. 58) 

"Ell 
E2 

/3   \ 

and consequently he can obtain the input admittance: 

2 
I, 

Y. 
in ^«V-^22

+<V-^TY73 (10. 59) 
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The effective transfer constant «nil here be defined by the ratio of each of the 

separator output I   to the current I   that would flow into a matched load.    l/G from 

the warne generator with an internal resistance l/G-    Thus, from 

E G2 Yin } I   =     -S-ii— —üi  J- (10.60) 
n i+Y. G+Y. 

in in 

I      =       EG/2 o ' 

one obtains 

'in   = a* jßlT< =    In (I   / I ) 

G + Y. G+Y 
=    In    ^  c

in Tf   In  —^ ^L (10.61) 
In 

(Input admittance)   The Y parameters of the partial networks may be obtained from 

the image parameters of the capacitance-coupled BPF of the preceding paragraph, as 

given in Eq-   (10.45); Thus from 

6 

T   "    £-h 
(10. 62) 

Z     =    Z   tanh -S   ,     Z,    =  Z     coth-^L 

one obtains 

Z.-4Z 2Z     Z. b        a a                ab 
zK - z •     p =     ZK- z b          a b        a 

A        _ j « 
yll   =   ^22   "   T       -    W11 (l+fl) 

(10. 63) 
1 a 

^12 =    y21   =   "F      =       W11 (l+fl) 

If one makes two such BPF with center frequencies f, and f, respectivelyi he should 

have a certain technique to admit the use of a common frequency, because they have 

different 12' a.    Assume the difference of the center frequencies be small and take 

f0=  (f2-£l)/2 (10-64) 

as the origin of the frequency, and assume also the unit of frequency to be 

"  c   AT   =    ST     =   TTT {10-65) 

l 6 O 
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Represent alao the distance from f   to L and f. by 

Then the parameter Q in each BPF may be replaced by 

0=0'   ♦ a 

and one can use the same frequency parameter O'  common to both B. P. F.' s 

The input admittances Y..    and Y?.    of the two B. P. F.' » are now 

(10. 66) 

(10. 67) 

Ylin 

= jC, 

2 in 

YU' "CTT 22 

2(0'4-ar   -j 
1+2   (O» +a)+  2    (O* ♦ a) 

Y, 

202   -j 

= JG ", z—I (i*nr+ Qc 

T 

U 

Y132 

~CTT 33 

« JG 
2(0'    - a) ^ - j 

1    2(0'  -a)      2(n,    -a) 

where 
W, 

(10. 68) 

11   -   1/G 

(Correcting admittance)   If two such B. P. F. ' s are connected in parallel at the input 

terminals, the resultant input impedance is 

Y.   '  = Y. .    +Y, . in 1 m x    2 in 

s jG    M0,-M -j 
1      2 (0'+ a)+ 2 (0'+ a) 

2 (8 j    -a)     -j 

1+ 2 (ß '  -a) 4 2 (ß • -a) 

(10. 69) 

Fig-  10-19 shows the dependence of Y, ,   . Y2 , Y, .    and Y '.    on fl '  . 
in m 

As seen from the figure, the input admittance is not a pure conductance at frequen- 

cies f. (O ' = - a ) and f? ( n '  = a )* l:)ut ha8 a superflous susceptance.    The values are, 

putting fl ' Ylta ^nto t^e above expression, 

2 

in       fl '  = 4 a G(l 
l-rt-4 a+ 8a 

7^JG 
8a 

14   4a"»t-8a 
(10. 70) 



105 
PIBMRI-104 8-62 

If a is large, one has 

IM «'=■»• 
G+j G 

1 + 4 a + 8 a 
(10- 71) 

The correcting admittance should act to cancel the susceptance of the above expres- 

sion.    It might be ideal, if it could cancel the susceptance over the whole passband- 

This being difficult, one considers good cancellations only at L and f?, which requires 

= - a = JG 
8a 

1 -4 a+8a 

2 
Ij   G 8a 

1*4 a f 8a 

(10. 72) 

There are an infinite number of functions that satisfy these conditions, but the simplest 

one will be good for practical use-    For example one may take 

«     2 
Yn  =    -JG 24,  (10.73) 

( i + 8a - J-M«' 

(Correcting network)   Let it be tried to approximate the above function by a coaxial line, 

short-circuited at the other end, with a characteristic impedance W and length I, as 

shown in Fig.  (10. 20).    The input admittance of this line is 

2lTf 
J 

1 tan -i 

Take 

I   =    c / m f 

(10. 74) 

(10. 75) 

with an arbitrary constant m.    Then Y   will be ' c 

j ir 
i 

,2.  2ir 

tan 
2ir 

T4  (1+ T")  "-^ AH ' n' '   ¥        '    m o 

-,     AO'    = Af   / f 

I 
(10. 76) 

V o o 

approximately.    Compare this with Eq.  (10. 73), they will have the same form if 

1       , , ^     1 W T   = (1* T 
8a ^ 

) 
(10. 77) 

W(l+  T2)   -|—   An; 
2 a 
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If the specific bandwidtt« ^n '   is fairly small, then T must be large;   Y    is near re- 

sonance, leading to delicate adjuetment, with additional problem of Q.    On the other 

hand, a complicated correcting network is not desirable from practical point of view. 

A certain amount of correcting effect may be expected if one chooses 

W = 1 / G,   m =  8 (10. 78) 

so that Y    -  - j G near f 1  The effective transfer instants« taking this Y   as Y  , will 
CO "CO 

be 

a     = In   *   /l + lllilfLLLjOj , +    I tl i (»' -a)2  A 
" "    V       l+Z^'+a)     Zffl'fa) 1*2 (B'. a)* 2(3'-a)'1 J 

+  In  [(H1 + a) -j {  1 +(0«  +a)} ] (10. 79a) 

y.j = the first term of ^^ 

t  In   [(0'  -a) -j {l+   (H1     -a)}] (10.79b) 

Fig.  10- 21 shows the variation of a     ^or various values of a ; some loss occurs at R*  ■ 

-a owing to imperfect correction,  and the smaller the value of a, the larger the loss. 

Fig-  10. 22 shows the loss with respect to a. 

(Experimental results)   Fig.   10. 23 shows the wave separator made up of two 

B. P F. ' s with the specifications. 

(1) center frequencies  (L and f,) 400 and 421 MC 

(2) Bandwidth (Afo)   2 Mc 

(3) Nominal impedance (l/G)   75 ohms 

The correcting network has characteristic impedance W = l/G =  75 ohms,   length 

I =  \   /8.3 cm.    The short-circuiting strip is adjustable.    iTig.  10. 24 shows the meas- 

ured data of the attenuation, in good accord with calculations from Eq.  (10. 79).    The 

loss due to incomplete correction at the center frequency,  cannot be distinquished from 

the loss due to resistance of the B. P. F. ' s Themselves. 

The above result shows tnat the lumped network theory can also be applied to dis- 

tributed networks. 

10.4   Inductance-coupled bandpass filters 

Let us consider inductance coupled bandpass filters such as given in the top line uf 

TABLE 3. 6 or Fig.   5. 9(g).    The attenuation characteristics of these network are the 

same as capacitance-coupled ones; but one can make the axial length of the network 

shorter if one realizes the impedance, connected to the second conductor, by a 
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capacitor of counterfacing circular plates; this technique is preferable in lower £re- 

quencieb.    Mere it was confirmed that a distributed line and a lumped element can be 

combined to make up a network and also that cascading of two sections is permissible' 

(Representations of the characteristics) 

The relations among the voltages and currents of the network in the figure are 

[V]     . v 
L   o 

] cos ßl [«][■ 
ij   CO. M *   [w]-1   [V^ 

j sin ßl 

j sin ßl 

-   I. 
j 2 w f C 

(10. 80) 

V 
which yield 

[Vj   =     [Wj [ij    p.      V7 =   -I,/  ZirfC 

where 

fw]-   wll 

1 

k, d 

k2 k, 1 

(10. 81) 

Elements Z    and Z,   of the equivalent lattice are obtained: 

=   w11(i-k2)p 

ril
Z { d(l + k2) - Zk^ }   p2 + W^l + k2)p/j2iroC 

vi - vi /, a   
a 

h - h 
V, + V, 

7 i 3 
b 

h + h 

(10. 82) 

W, 

dW11p   +   l/j2irfC 

and consequently the image parameters also: 

2kl 1 
l{d " i + k2    > p + w11 Z w f c 

P2 (10. 83a) 

d p   + W^JTTTC. 

tanh 
(l-k2) 

Ti+kp" 

d P ^ W11 j 2 ^ f C 

1  
2kl i 

< d "    l+k2    ) P + W11 j Z ir f C 

(10. 83b) 
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The cutoff frequencies w. and w     are those frequencies that satisfy 

«j :      d p +   1 / Wy j 2 » f C   =  o 

"z:   <d - nm^ P + wuj 2 w f c *0 

(10. 84) 

and the center frequency w    it, such that satisfies 

• {d'*i) P + vr.'jivtc = o 
11 

(10. 85) 

The image impedance at w    is 

w w   =   w Wll(l-k2)   Wo (10. 86) 

Let this value be R, then the effective attenuation is given by 

= 1 - 

f Za Zb   -   R     1 Z 

■iR<-za»  1 
{(1 + k2) p2 - (1 - k2) «o

2}  (dp+ 1/W11 j 2 ir f C) - 2k1
2 p3 f 

L   »o 2 p j (dp + 1/W1 2 ir f C) k2 - kj' p j 
J' 

(10. 87) 

(Approximate equations of characteristics) 

For the purpose of easy examination near the center frequency, let the deviation of the 

frequency f from the center frequency £    be ££.    Then 

( =  f   -4— =  f ? of of 
0 _=£(!+  4L.) 

o f o o 

=  fo ( 1 + AF ), AF =    Af / f o (10. 88) 

and only the region of small AF «will be considered.    One has the approximation: 

2 it   f 
2 irf p = j u = j taa —— I   = j tan 

1- e 
=   j w   (i+ e    — 

^    o o       w. 
A F ) ,    8^ 

f    ( 1+AF) 

2 ir f   f o 

(10. 89) 

Eq.   (10. 85), which gives the ceiiici frequency,  will then be 

(d - k^) uo   -   1 / Wn 2 ir fo C =  o (10. 90) 
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u    or f    should satisfy this equation-    Similarly, AF corr4sponding to the cutoff fre- 

quencies are ? 

AF 
 ? ** ~? 

«d-kl   )+   -jf-<1 + Wo ' 
o 

AF2 = 

k1
z(l-k2)/ (ifl^) 

^V^-T^T» eo -^r z < 

1+w 

Suppose A F. and A F, are small so that 

1 » k.2 . d » kj 2 

(10- 91) 

(10- 92) 

then 

AF1   =  -AF2 = 
.    -VA 

" " fl       «   Z+ 1 1 + o o o     

(10- 93) 

The expression £q.   (10. 87) for the effective attenuation becomes 

2o = 1 + - d(l + K) AF 

{d (1 + K)k2 -^2 K AF ■^J 
-lf(-       d11t K)      ar}2 

A r     2 1 + w 

(10. 94) 

This is the same as Wagner character. 

(Two sections in cascade) First obtain the effective attenuation for the cascade of two 

same symmetrical networks. As shown in the figure, two identical symmetrical sec- 

tions (A, B, C, A) are connected in cascade to form a new network (A1 > B' , C' , A' ). 

The effective attenuation of the resulting network will be obtained from 

2o  =   1 - T- ( "TT "  ^ R) 2 (10. 95) 

in which 
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B'  =  2AB,     C  =  2AC 

A   = 
Za + Zb ß = 

2   Za
Zb 

Zb-Za Zb-Za 

.   c = 
z,-z b     a 

Thui 

-   2o   =   1 -  ^- { ^- - CB )2 (2A)2 

fZZ.   -R        ^ r      Z+Z,      -) 

I RfZ.. - Z  )     J L     Z,. - Z J R(Zb - Za) b        a 

= 1 

[{(1 + k2) p2 - (l.k2) »J     { dp + ^^ ]     - 2 k1
2 p3 j 

2    2 
wl   P        0^2 "^ ^ P + 

W   jZirfC 11 

2 
f(d-lh

2)p+ 1    \ 
{ ^ WilJ21r£C    / 

I 2 k2       ^ 
(dk   - k/) p +   -^— 

i        '        1 WuJ2irfC r 
An approximate formula will be obtained, as before 

T 2o =  1 + d (1 + K) A F 

'd (1 + K) k2 - 21^1 AF - kj 

^1 + 4|d(l.K)AFl4 

I        k,^ J 

2d (1 + K) A F 

(10. 96) 

(10. 97) 

jd (1 + K) k^k^Kj A F - kj' 

= lt4 iff,) (10. 98) 
kj" J "*r 

This is a Wagner characteristic of n =  2.    (Design procedure)   Here the design proced- 

ure goes as follows in narrow band requirements: 

(i)   Center frequency   (f ) 

(ii) Nominal impedance   (R) 

(iii)Pass bandwodth   (Af.) 

(iv) Length of coupled portion   if) 

are assumed to be given. 
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2 w f 
(i)   From the conditions (1) and (iv), one determines u    = tan — I 

6    =   2 ir  f    1 /c o                 o      ' from Eq. (10. 89) 

1 + w  2 

K=   e          0 

o        w from Eq- (10. 94) 
o 

(2)   From the condition (ii), one has 

o 
from which 

may be obtained- 

R ^    [Zo]   « =  «^   =  Wll ^ " k2) Wo   =    WllWo   from **■   (10- 86) 

Wil =  R / Wc 

(3) Since the second conductor is a resonant line, one may take dW.. =  75 ohms so as 

to have the best Q' thus 

d =   75 / W11 

(4) An equation 

(d - k/) w    - l/W.. 2 ir f C   =    d «    - l/W.. 2 ir f C =  o 1        o       '     11 o o       '     11 o 

must be satisfied at the center frequency, as obtained from Eq.   (10.90)   One can deter- 

mine the value of C from this relation, 

C= 1  
d W., 2 ir f    w 11 o     o 

(5)   From the condition (iii) and the equations (10. 88) and (10. 93), one has the relation 

2 

AF1 = 

Afl 
fo -   d (1 + k) 

2   _ Afl 
—r— (1 + K) d 

wh-ch yield«! 

\ o 

(6) The relations between the line constants W   , d,  k,  and the line structure can be 

given approximately by the following expressions, under the assumption that the coup- 

ling is small: 
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Di   h2 

Wll138lo8l0   HTJ 

wu ^ = 138 log 

W    d = 138 log 

11". " "—"»IO    IT" 

D 
11 10 ^" 

{10. 99) 

One can determine D/d., D/d, and D/h fron, these relations. Thus, if one specifies 

any one of D, d , d-,, h, then all the others will be determined. Usually one specifiet 

0 or d. from the considerations on Q.    k, is obtained from 

Wu k2 =  138 log 10   -^L (10.100) 

(An example of preparation)   A filter was made with dimensions shown in Fig.  10.29« 

which has the center frequency near 70 MC-    i he properties of this network will be 

examined.    It is made that 

D =  5.1 cm, d   = 1. 475 cm, d, = 0-175 cm, h 

so that the line constants will be 

3. 65 cm 

Wu= 15''  54, k^- 0.1257, k2 = 0.01970, d= 0.46604 

take f   =   70 MC, then along with 1=35 cm, one has 

O , , 2   W       70   MC ,r n     rLlA-t u    = tan f = tan   rjr—    x 35 = 0. 56347 o c ,     ,- 10 3 x 10 

2 IT f 
e = 2. 

o c 
0. 51313 

1 + w 
K =   9 

and consequently       2 

Af, -Vfo 

1.19979 

.al2572 x 70 x 106 

= 1.0789 MC n "   TTiraj 0.46604(1 + 1.19979) 
Therefore the values of a,  calculated with the use of Eq.   (10. 94) will be as shown by the 

broken line in Fig.   10- 3a 

The value of C should be 

1 

(d - kj') wo W11 2 ir f 
=   56.174 p h 
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The good agreement between the measured and the calculated values in Fig*  10. 30 

means the applicability of a combination of lumped and distributed elements« as well 

as that of lumped network theory tc cascade connections- 

10- 5-    Antimetrical bandpass filters 

An experiment was made on the antimetrical BPF in Fig.   5.15-    This is a simplest 

example of a B  P. F.  formed by the cascade of symmetrical lattice networks, one of 

L only« and the other of C only. 

(Network characteristics)-    The configuration of the network is like that in Fig.  10- 31, 

and the attenuation is given,  from Eq-   (5. 20) as follows: 

2a =  1 + (JL1L_ P2-1       1 
€ I     Ap KP       J 

A ♦• w, - Wji     K =  w    + w.,    u   w., =  1 

(10- 101) 

where u, and w    are such frequencies that give 3 db attenuation-    The line constants are 

W    ^  /l-l-^-.   k= /gSL   .     d-.l (10.102) 
o 7     '   K V l+Ak/2   ' 

(Approximate expression for the characteristic) 

An approximate expression will be obtained that will be convenient to examine the char- 

acteristics near the center frequency,  when the band is narrow. 

Let the center frequency be f  ,  so that 

■p2] f  = -1 if    J        0 

Consequently 
2   IT    f 

«    = tan 1 
o                 c =  1 . 

2 IT    f 

c 
ir =  T 

Use the notation 

w =  1 + (Aw) =    1 •f (- 
o 

then,  one has the approximation 

A=  «, - w. =  w? " 
1 

W2 
= ,Af2 

IT   (-J- 
O 

-) 

K ^  w    + u   =  2 

Hence the line constants should be 

W     ~   1.   k2   =    ir 
0 

Af, 
» d  =    1 
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As mentioned (NOTE),  5. 3,  (p ' -1)/K P = j, when Ai» small,  so that 

= 1+   ^ 
Za~ iM^-tLj)     =   lJ ■/.0.   I 

This approximates a Wagner character, n = 1. 

The loss due to line resistance may be obtained, in the same manner as in Eq. (10. 53) 
for capacitance coupled B- P. F. , 

2a -  1 +   (*a'l\ Z   ~ \ i   <iSU     \ 2        i x   /'ta'l   . 2 
2 ^ 

(Trial construction)   Th<- design conditions are: 

(i)      center frequency (f )    150 MC 

(ii)    nominal impedance (R)   120 ohms 

(iii)   bandwidth   (2 Af2)      +   320 KC 

(1) From f    =  150 MC,  one has o 

2 ir f I , .        ,c u      = tan    »   1, t    =  25 cm o c 

(2) From the bandwidth + 320 KC,  one has 

k2 =  nAf^/f    =      Trx320 KC/150 MC   =  0-670xl0"2 

k=    00819 

(3) The line dimensions will be found from 

with R =   W    =   120 ohms and the above value of k.    Take 2D=   34 mm, then one obtains o 
h =  9-32 mm,  2d =   3.19 mm.    The loss at the center frequency is calculated to be 0. 25 

dß with the outer conductor of copper and the inner of brass, while the measured value 

is 1 db.    This discrepancy may be attributed to the increase of resistance due to bending 

as well as to the disturbance of the electromagnetic field. 

10. 6-    Lowpass filters with Wagner characteristics. 

The L. P. F.   of Wagner characteristics of n =  3 or 5, TABLE 9-1.  Fig.  9- 2, may be 

realized as in Fig.  10. 35, with cutoff frequency w, = 1. 

To obtain line dimensions from line constants, one may use the following expressions, 

which have corrections due to proximity effect.    The following Fig.  10. 36(b) is a chart 

of numerical values obtained form the expressions. 
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•1^-'}—l^-l 
Wok .   ,0 cosh       «-ii^J-^.    =  30 „.h -'   ' '   ^ '      Z 

Fig.  10  37 shows the experimental results made on a modified network of n =  3. 

The measured value of a is smaller than the calculated, which is considered to be due 

to stray capacitances arising from the disturbance of electromagnetic field at bends 

and at the input and output terminals-    These points are the greatest disadvantage of 

this type of filters,  one must pay good attention. 

The attenuation peak moves if one shifts the short-circuit strip A,  as could be ex- 
(14) pected from Sato1 s work       .    The short-circuit strip ß would not be necessary in theory« 

but without it the attenuation will go down steeply at some point.    This suggests  one 

that there exists some amount of coupling between the lines before and after the short- 

ciurcuit strip A-    Thus one has to use the short-circuit strip ß so as to make the line 

from A to B act as a coaxial line. 

Fig.  10. 38 shows the experimental results on the network n =   5.    The measured 

values of a is lower than the calculated, perhaps by the same reason as above*    (b) in 

the figure shows various measured values during adjustments,   (c) shows the dimensions 

of the network, which were calculated from the expressions mentioned.    It will be con- 

venient for adjustments if one makes the top length and the position of short-circuit 

adjustable.    Measured values are close to the calculated,   so that the Theory may be 

considered to be correct. 

The aims have been almost attained, that was described in the beginning of this 

chapter,   by the several examples of experiments described above.    That is, the design 

principles on coupled line filters may be considered to be correct at large.    It has also 

been confirmed that the network theory on lumped networks can be applied to distributed 

ones without any modifications,   except the transformation of frequency. 
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Clofting Remarks - Summary 

Studie« on coupled line filter« have been presented, that have been made thu» far. 

The ingredients will be summarized. 

Chapter 1.    Equations of transmission in parallel multi-wire lines:   The transmission 

was studied in parallel multi-wire lines over ground.    Three kinds of parameters, 

i.e. , the self characteristic impedance,  symmetry coefficients, and coupling coeffi- 

cients were introduced to represent a characteristic impedance matrix,  rendering 

it convenient to derive characteristics of coupled line networks.    As examples,  a two- 

wire line and a three-wire line have been cited,  along with cases of particular construc- 

tions. 

Chapter 2.    Simple networks made of coupled two wire lines:   28 kinds of networks may 

be formed with a two-wire line, in which two of the four terminals are taken to be in- 

put and output terminals,  and the other two may be open circuited or ground-connected 

or connected to the ground through another arbitrary ele nent.    Their      twork para- 

meters have been obtained,  and their equivalent network representations are also 

given in the form of combinations of coaxial elements.    There are also given lumped 

equivalent representations obtained by the use of Richards'  frequency transformation. 

Equivalent networks of coupled line networks have been given systematically, and 

hence the coupled line networks have become easy to understand.    Among the 28 net- 

works, the characteristics of 14 networkp have been examined, whose properties were 

not yet known.    Various kinds of networks have been obtained including L. P. ,  B. E. f 

derived-m H. P. ,  B. P.  etc.    There are also tabulated equivalent networks of those 

made of unsymmetrical two-wire lines.    Finally there are given the procedures of 

transformation of coaxials filters into coupled line filters; especially the transforma- 

tion of a coaxial loop is explained in an example. 

Chapter 3.    Simple symmetrical networks made of three-wire lines:   the networks with 

3-wire lines are studied,  but limited only to symmetrical ones,  because of complexity 

in structure.    There are treated 23 networks, with 2 terminals, out of six, are taken 

to be input and output,  other 4 terminals open-circuited,  ground-connected or connect- 

ed to the ground through another element,  all only for the case of symmetry.    Of them 

expressions of cliaracteristics are obtained for L. P. F.  and H. P. F.  with attenuation 

polen,  10 B. P. F. ' s and 5 B. E. F. ' s from their equivalent networks.    It has been 

pointed out specifically that B. P. F. ' s and B. E. F. ' s of narrow bands can be easily 

made, which constitutes an advantage of coupled line filters. 

Chapter 4.    Ladder-type network«:   With equivalence relations in the preceding two 

chapter« in hand, there are presented transformation« from ' 'mped network« into 
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coupled line networks.    A procedure is shown where ladder networks, designed with 

lumped parameters,  are divided into appropriate sections,  each of which is trans- 

i'ormed into coupled line type-    The L type network may be built up with a double 

coaxial elenxi.t, which is only a special case of a coupled two-wire line*    Next, basic 

T-networks are treated,  and in combination with shunt elements,  ladder networks 

have been treated having Wager or Tchebycheff characteristics with or without attenua- 

tion poles.    Likewise, the basic H. P.  T-network has been realized in a 3-wire line, 

and ladder networks were cited on Wagner or Tchebycheff characteristics with or 

without attenuation poles-    It is also pointed out that B. E. F. ' s and B. P. F. ' s can 

easily be deduced from L. P. F.  and H. P. F. ,  thus obtained,  by means of frequency 

transformation. 

Chapter 5-    Narrow band filters:   Narrow band filters can be made,  if one makes good 

use of the coupling.    First obtain a B. P. F.   in lumped constants,  and connect unit 

coaxials at the input and output terminals,  where the coaxials elements are so chosen 

that they do not affect the amplitude characteristics.    Divide the network into appro- 

priate sections, transform each section into coupled-line type.    Thus the bandwidth is 

controlled by the coupling coefficient,   BO that the bandwidth may be made narrow,  by 

making the coupling small.    Examples are shown for the combinations of Wagner 

networks n =  1 ~ 4 and unit coaxials.    If one uses L or C as degenerate elements,  in 

place of unit coaxials,  one will have an alternate cascade of symmetrical la*tice of 

L only and those of C only.    Transform each lattice section into coupled-line type,  and 

the resulting network will have a bandwidth dependent on the coupling coefficient. 

Values of elements are obtained for those derived from Wagner B. P. F. ,   n =   1-~ 3. 

An example is given on a 3-element type B. P. F.   made in coupled-line type. 

Chapter 6.    Extraction of coupled two-wire lines:   If one increases the number of 

wires in a line,  t.'ie structure will become complicated and impractical,   so that he 

should rather consider cascade connections of coupled two-v/ire lines of simpler 

structures.    First obtain the network   '\_Yj     resulting from the cascade connection 

of an arbitrary network    [Vj   and an arbitrary coupled two-wire line.    Next,  decom- 

pose the given   [Y]    into a cascade of a coupled two-wire line and a network   [Y1]   . 

It has been proved that if    [YJ    is positive real then    LY'J     is also positive real and 

preserves the property of a network.    The writer points out that the extraction of a 

coupled two-wire line is only an extension of the extraction of unit coaxial lines,  pro- 

posed by Richards,to four terminal netw   .ks,   and it can be applied to multi-terminal 

networks.    Also a procedure is pn  losed on the decomposition of four-terminal 

networks. 

Chapter 7.    Design of symmetrical networks:   A design procedure is described,  that 

makes use of the extraction of coupled two-wire lines stated in the preceding chapter. 
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Under the < ondition of symmetry,  the expressions for   [Y J   ,     [Y'l     and line co-*«- 

tants of the coupled two-wire line become simple,  and the synthesis of the symmetri- 

cal network will be effected by the repetition of extracting coupled two-wire lines.    If 

one treats the matter with equivalent lattice networks, the extraction of a coupled 

two-wire line may be replaced by the extraction of a coaxial line from each of two 

network arms; the latter is simpler in calculation and also makes the comprehension 

easier.     Examples arc given on the design by Q-functions,  design of Wagner networks 

and Tchebycheff   networks with or without attenuation poles. 

Chapter rt.    Design of antimetrical networks:   With the use of the condition of antimetry, 

the expressions for the extraction of coupled two-wire lines becomes simpler.    Again 

it has been proved that if   LY J   is antimetrical,  the remaining network    [Y'l     is also 

antimetrical.    As design examples,  network» of Wagner or Tchebycheff characteristics, 

with or without attenuation poles,  are cited.    Attention should be paid to the point that 

if one repeats the extraction of two-wire lines,  he may be encountered with a Brune 

section,  which cannot be realized by a two-wire line over ground.    In such cases one 

should consider another transformation.    In this article, the problem is solved by the 

combination of taking out a shunt element and the extraction of a coupled two-wire line. 

Chapter 9.    Frequency transformations:   In distributed networks,  the frequency trans- 

tormation can  not be applied to each network elements,  because there are cascade 

elements in the networks.    The frequency transformation should be applied to the net- 

work parameters themselves.    The transformed frequency may be of the same form 

except it is a tangent function.    L. P. F.' e and B. E. F. ' s can be synthesized from the 

transformed network parameters.    Examples are shown on the design of Wagner net- 

works.    In cases of H. P. F.   and B. P. F. ,   simple extraction of coupled 2-wire lines 

will lead to negative coupling coefficients    which still remains to be a problerr..    For 

comparison,  an L. P. F.  of n =   5 has been realized in 3 kinds of configurations, on 

each of which is shown the variation of line constants with the cutoff frequency. 

Chapter 10.    Experimental Examples:    Here are cited various experiments made on 

coupled-line filters.     (1) As an example of the network of a coupled two-wire line. 

Chap.  Z,  experimental results are described on a bandstop filter,  along with its 

image parameters,   effective attenuation,  equivalent netwerks,  effect of line resist- 

ance,  and a design example.     (2) A capacitance coupled B. P. F.   is taken as an example 

for Chr.p.   3,  and experimental data are described in detail along with expressions of 

characteristics,  approximate expressions,  approximate equivalent networks,  effect 

of resistance.    This deserves also as an example for Chap-   5.    (3) Two capacitance- 

coupled B. P. F.   were combined to form a wave separator,  in like manner as in X- 

termination.    This is to confirm the applicability of lumped network theory into dis- 

tributed networks.    There are described on the principle,   six-terminal connection, 
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input acinmtar.ce,  correcting admittance and experimental data.    (4) A cascade of two 

sections has been made,  where each section consists of an inductance-coupled B. P. F. 

and a lumped capacitor.    Here it is aimed to examine the problem of composite con- 

nection and also the validity of mixed use of lumped and distributed elements.    Des- 

criptions are n . le on the characteristics) approximate formulae, expressions for 

two aectiona in cascadr,  design procedure and experimental data.    This deserves as 

an example for Chap.   3 and 5.    (5) As an example of a narrow bandpass filter formed 

by the cascade of symmetrical lattice in Chap.   5,  an experiment is described on the 

case n =   1. with network characteristics and approximate formulae.    (6) An experiment 

was made on Wagner L. P. F.  n =  3 and n =   5,  as examples of Chap*   7 and Chap.   9- 

The above experiments are all in good accord with theoretical calculations,  so 

that one may consider the calculations!   Chap.   2-~9,  are almost correct. 

Thus here are arranged materials 3f study on coupled-line filters as systemati- 

cally as possible, but the study is not yet completed and there remain many problems. 

With regard to synthesis, it has been proposed that the extraction of two-wire lines 

may be a significant process,  but it is not a key that solves all problems but is only 

a method.    One will notice that problems still remain open on the synthesis of H. P.F. 

and B. P. F.    As a whole,  the significance is placed on the network Theory; the practi- 

cability has only been mentioned at the description on experimental examples»    It is 

also important to obtain the relations among line dimensions and line constants, but 

the description is here limited only within necessity, because it is a prollem of the 

electromagnetic field.    The writer would like to mention that the capacitance-coupled 

B. P. F.  is used as a suppressing filter for the intermodulations of press car communi- 

cation. 

Acknowledgment - - - omitted. 
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CAPTIONS. 

Fig.  1.       A parallel multi-wire line over ground 

Fig.  2..       A parallel 2-wire line over ground 

Fig.   3.       A symmetrical 2-wire line 

Fig.  4.       A parallel 3-wire line over ground 

Fig.   5.       A «ymmetrical 3-wire line 

Fig.  6.       A 3-»vire line symmetrical with respect to the second wire 

Fig.  2.1    A sy.nmefrical 2-wire line over ground 

TABLE 2.1    Parameters of "imple networks with a two-wire line (I) 

TABLE 2. Z    TV.« same <II) 

TABLE 2. 3 The same (III) 

TABLE 2.4 The same (IV) 

TABLE 2. 5 The same (V) 

TABLE 2. 6    Equivalent circuits (I) 

TABLE 2. 7    Equivalent circuits (II) 

TABLE 2. 8    Equivalent circuits (III) 

TABLE 2. 9    Equivalent circuits (IV) 

I TABLE 2.10   Equivalent circuits (V) 

Fig.  2. 2    A coaxial lowpass filter 

TABLE 2. II Lowpass filters 

Fig.  2. 3    Examples of lowpass characteristics 

TABLE 2.12  Bandstop filters 

Fig.  2.4   A bandstop filter (II) 

TABLE 2.13 Highpass filters 

Fig.  2. 5    Characteristics of a highpass filter 

TABLE 2.14  Derived-m type highpass filters 

TABLE 2.15  Bandpass filters (1) 

TABLE 2.16 Bandpass filters (II) 

Fig.  2. 6   An example of bandpass characteristics 

Fig.  2. 7    Bandpass filter (III) 

TABLE 2.17  Equivalent circuits in case of a unsymmetrical 2-wire line (I) 

TABLE 2.18 The same (II) 

TABLE 2.19 The same (III) 

TABLE 2. 20 Equivalence transformation after Ozaki and Ishii (rewritten) 

TABLE 2. 21 Transformation of networks with attenuation poles 

Fig.  2. 8   A unit loop and the equivalent circuit 

TABLE 2. 22 Networks equivalent to a unit loop 
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Fig. 2.9 

Fig. 2.10 An example of a network having a Brune section (numerical values 

are of admittances) 

Fig. 2.11  The same 

Fig.  3.1    A 3-wire line over ground 

Fig.  3. 2   Art equivalent lattice network 

Fig. 3. 3   Input and output terminals of a 3-wire line 

Fig.   3.4    Equivalent circuit of Za 

Fig.  3. 5    Equivalent circuit of Zo 

TABLE 3.1   Za and Zb of simple 3~wire line networks 

TABLE 3. 2 The same 

TABLE 3. 3 3-wire line networks 

Fig. 3. 6   Low pass network 

Fig.  3. 7   Highpass network (I) 

Fig. 3. 8   Highpass network (II) 

Fig.   3. 9    Constant-k type highpass filter 

Fig.  3.10  Examples of frequency characteristics 

TABLE 3. 4 Bandstop networks 

TABLE 3. 5 Capacitance-coupled narrow band filter 

TABLE 3. 6 Inductance-coupled narrow band filter 

TABLE 3. 7 Wide band filters 

Fig.  3.11   Bandstop network 

Fig. 3.12 

Fig.  3.13  Bandpass network 

Fig.  4.1    L-type network 

Fig.  4. 2    Extraction of a two-wire line in L-type network 

TABLE 4.1   Simple L  type networks and the equivalent coupled-line networks 

TABLE 4. 2 Basic lowpass network 

Fig. 4. 3    Wagner lowpass of n =  6 

Fig. 4. 4   Tchebycheff lowpass n * 6 with no attenuation poles 

Fig. 4. 5   A ladder network of two derived-m L. P. F. 

Fig. 4.6   Tchebycheff L. P. F. with attenuation poles 

Fig. 4. 7   Attenuation characteristic 

TABLE 4. 3  Basic highpass network 

Fig. 4. 8   Wagner highpass of n &  6 

Fig. 4.9   Tchebycheff highpass, n »  5,  with no attenuation poles 

TABLE 4. 4 A highpass network with a transformer 
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Fig. 4.10 Ladder Tchebycheff highpass network of n =  5 with attenuation poles 

TABLE 4. 5  Transformation of elements by frequency transformation 

Fig. 4.11  Tchebycheff BEF with attenuation poles 

Fig. 4.12 B- P. F. with no attenuation poles 

Fig. 5.1    Wagner BPF, n = 3 

Fig. 5. 2   BPF of n = 3, with ideal transformers inserted in between 

Fig. 5. 3   A network with coaxial lines at the input and the output ends 

Fig. 5-4    The network given in coupled line type 

Fig. 5. 5   That transformed from the one in Fig.  5.4 

Fig. 5. 6   That transformed from the one in Fig.   5. 5 

Fig. 5. 7   Synthesis procedure of Wagner network, n »  1 

Fig. 5. 8   An alternative procedure of synthese   n «   1 

Fig. 5.9   Wagner BPF. n a   1, of parallel resonance type 

Fig. 5.10  Wagner B. P. F. ,  n =  2 

Fig. 5.11   Wagner B. P. F. ,  n=  3 

Fig. 5.12 Alternative method. n=  3 

Fig. 5.13 Wagner B. P. F. , n = 4 

Fig. 5.14 Wagner network with L and C added 

Fig. 5.15 A network formed by adding L and Cto a network of n «   1 

Fig. 5.16 A network formed from a Wagner network, n « 2 

Fig. 5.17 A network formed from a W   ^ner network, n = 2 

Fig. 5.18 A network derived from thai of n = 2 

Fig. 5.19(a)   Relation between A and A K 

Fig. 5.19(b)   Relations among A and network elements 

Fig. 5. 20 A network with L and C added to a Wagner network, n =  2 

Fig.   5. 21 A network with L and C added to a Wagner network, n a 3 
3 

Fig.   5. 22(a) Relation between A and A K 

Fig. 5. 22(b) Relations among A and network elements 

Fig' 5. 22(c) Relations among A and line constants 

Fig. 5. 23 Three element bandpass filters 

Fig. 5. 24 Coupled line network derived from a cascade of six 3-element bandpass 

sections 

Fig. 6.1    Coupled two-wire line 

Fig. 6. 2    Cascade adding of a coupled 2-wire line 

Fig. 6. 3    Extraction of a coupled 2-wire line 

Fig. 6. 4   Decomposition of Z 

Fig. 6.5    Decomposition of   [^3   ant^    ^^ 1 
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Fig.  7.1    Extraction of a two-wire line 

Fig.   7. 2    Equivalence of the extraction of a coupled two-wire line and that of 

t oax.als in the equivalent lattice 

TABLE 7.1(a)   Two-terminal reactance functions and the bar-type network« 

(short-circuited ends) 

TABLE 7.1(b)    1 wo-terminal reactance functions and the bar-type networks 

(npfn-circuited ends) 

Fig«   7. 3    The network designed with Q functions and its characteristic 

Fig.   7. 4    An example of Wagner L. P. F. , n =  5 

Fig.   7. 5   Tchebycheff L. P. F. , n *  5, with no attenuation poles 

Fig.   7. 6    Tchebycheff L. P. F. ,  n =  5,  with attenuation poles 

Fig.   8.1    A structure containing a Bruno section 

Fig.  8. 2   A Brune section 

Fig.   8. 3    Wagner network, n = 4 

Fig.   8.4   Tchebycheff network, n = 4, with no attenuation poles 

Fig.   8. 5   Tchebycheff network,  n = 4, with attenuation poles 

Fig.   8.6   Wagner network, n=  6 

Fig.  9.1    Structure of the reference L. P. F. 

(a) symmetrical 

(b) antimetrical n = 4,   8, 12  

(c) antimetrical n =  6,  10,  

TABLE 9.1(a)   A, B. C and D of Wagner networks 

TABLE 9.1(b)   Za and Zb of Wagner networks 

TABLE 9.1(c)   Za and Zb after frequency transformation 

TABLE 9.1(d)   Wa and Wb of lowpass filters 

Fig.   9.2    A general structure of lowpass filters (symmetrical) 

Fig.  9.3    Characteristics of symmetrical Wagner networks (L. P.) 

TABLE 9. 2(a) A,  B,  C and D of antimetrical Wagner networks 

TABLE 9. 2(b)   Y parameters of antimetrical Wagner networks 

TABLE 9.2(c)  Y parameters after frequency transformation 

Fig. 9. 4   Wagner L. P. F. , n = 2 

Fig.  9.5   Wagner L. P. F. ,  n=  4 

Fig.  9« 6    Characteristics of antimetric. Wagner L. P. F. 

TABLE 9- 3(a)   Za and Zb of symmetrical Wagner B. E. F. ' s 

Fig.  9. 7    Symmetrical Wagner B. E. F. 

TABLE 9. 3(a)   Za and Zb of B. E. F. ' s given in bar-type networks 

Fig. 9. 8   Frequency transformation of a shunt capacitance 
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Fig. 9. 9   ^. gnor E. E- F. . n = 4 

Fig.  9.10 Structui e of an L. P. F. , n *  5. and the effect of u. 

Fig.  9.11 Alternative structure of the L- P. F. , n =  5, and the effect of *». 

Fig. 9.12 Another structure of the L. P. F. , n =  5, and the effect of «. 

Fig. 10.1  Image characteristics of a B. £. F. 

Fig.  10> 2 Equivalent circuit of B. E. F. 

Fig. 10. 3 Equivalent circuit at u   , the attenuation pole 

Fig.  10.4 Two-core cable 

Fig.  10. 5 Construction of the trial-made B. E. F. 

Fig.  10. 6 The attenuation characteristic of the trial-made B. E. F. 

Fig. 10. 7 A B. P. F.  and its equivalent network 

Fig. 10. 8 Variation of image parameters with 12 

Fig. 10. 9 Variation of effective attenuation a with il 

Fig.  10.10 Approximate equivalent network near the center frequency 

Fig. 10.11 Three-core cable and the approximate two-core cable 

Fig. 10.12 The structure of a trial-made B. P. F. 

Fig.  10.13 The attenuation character of the trial-made B. P. F. 

-measured 

■calculated 

Fig.  10.14 Variation of center frequency with adjusting screw 

The abscissa: travel of adjusting screw 

Fig.  10.15 Variation of center frequency with temperature 

Fig.   10.16Six-terminal network 

Fig.  10.17 Capacitance coupled narrow B.P. F. 

Top; input,  bottom: output 

Fig.  10.18Correspondence of the frequency axes 

Fig.  10.19Input admittances of the wave separator 

Fig.  10. 20Correcting network 

Fi£.  10. 21 Variation of mismatch loss, at the center frequency, with a 
si£. 10. 22Variation of Q,, with a 

Fig.  10. 23 Structure of the trial-made wave separator 

Fig.  10. 24 The separating characteristics of the trial-made wave separator 

Fig.  10. 25Structure of B.P. F.   and the equivalent network 

Fig. 10. 26 Cascade connection of symmetrical networks 

Fig.  10. 27 Variation of a with AF 

Fig. 10. 28Structure of a 3-core cable 

Fig. 10. 29 Structure of trial-made B. P. F. 

Fig.  10. 30 Attenuation Character of trial-made B. P. F. 
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Fig.  10. 31 Antimetrical bandpass Filter 

Fig.  10.3^ Two-core cable 

Fig. 10. 33 Structure of trial-made network 

Fig. 10. 34 Attenuation character of trial-made network 

Fig. 10. 35 Wagner L. P. F.  («, =   1). n =  3 or 5 

Fig. 10. 36 Two-core cable 

Fig. 10. 36(b) Relations among line constants and dimensions of a 2-core cable 

Fig.  10. 37 Trial-made Wagner LPF. n =  3 

left top: input 

left bottom: output 

A.  B: Short-circuit strip 

  calculated 

 o—— n.easured 

 x when strip A is farther from the terminals 

 . when strip A is nearer to the terminals 

 A when strip B is absent 

Fin-  10. 38 Wagner L. P. F. , n=   5 

(a) attenuation characteristic 

  calculated 

 o— measured 

(b) examples of characteristics happened to occur during adjustments 

(c) structure of the trial-made network 


